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a b s t r a c t

Extreme value modeling has been attracting the attention of researchers in diverse areas
such as the environment, engineering, and finance. Multivariate extreme value distribu-
tions are particularly suitable to model the tails of multidimensional phenomena. The
analysis of the dependence among multivariate maxima is useful to evaluate risk. Here
we present new multivariate extreme value models, as well as, coefficients to assess
multivariate extremal dependence.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Let X = {X(x), x ∈ Rm
} be a random field, I = {1, . . . , d} and consider I1 = {1, . . . , i1}, I2 = {i1 + 1, . . . , i2}, . . . , 2

Ip = {ip−1 + 1, . . . , ip = d} a partition of I , 1 ≤ p ≤ d. For a fixed set of locations L = {xj : j ∈ I} ⊂ Rm and some 3

partition Lj = {xi : i ∈ Ij}, j = 1, . . . , p, with 1 ≤ p ≤ d, consider the random vectors XI1 = (X(x1), . . . , X(xi1 )), . . . , 4

XIp = (X(xip−1+1), . . . , X(xd)). We are going to evaluate the dependence between the vectors through coefficients, that is, 5

the dependence between the marginals of X over disjoint regions L1, . . . , Lp. 6

Examples of applications within this context can be found in Naveau et al. (2009) and Guillou et al. (2014) for d = p = 2, 7

i.e., two locations, in Fonseca et al. (2015) for d > 2 and p = 2, i.e., two groups of several locations and Ferreira and 8

Pereira (2015) for d = p > 2, i.e., several isolated locations. More precisely, in Naveau et al. (2009) was inferred the 9

dependence between maxima of daily precipitation in pairwise locations of Bourgogne (Dijon), Guillou et al. (2014) address 10

the dependence between the monthly maxima of hourly precipitation of two stations from a hydrological basin in Orgeval 11

(Paris), in Fonseca et al. (2015) is assessed the dependence between annualmaxima values of dailymaxima rainfall in several 12

regions of Portugal and Ferreira and Pereira (2015) evaluate the dependence within the annual maxima of tritium (pCi/L) in 13

drinking water for three locations in Alabama State (USA). 14

In the applications, in order to study the dependence between sub-vectors of X we can form an auxiliary vector 15

(Y1, . . . , Yp) where each variable Yj somehow summarizes the information of XIj , j = 1, . . . , p, and study the dependence 16

between the variables Yj. This is the approach followed by some authors (Naveau et al., 2009; Marcon et al., in press). In our 17

proposal to infer the dependence between clusters of variables, we deal directly with the vectors XIj , j = 1, . . . , p. On the 18
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other hand, if the random field is vectorial, that is, for each location xi, X(xi) is a vector (X1(xi), . . . , X s(xi)), whenever we1

think of the dependence between X(x1), . . . , X(xd) we have dependency between vectors.2

The dependence between the random vectors XI1 , XI2 , . . . , XIp can be characterized through the exponent measure3

ℓx1,..., xd (t1, . . . , td) = − ln F(X(x1),..., X(xd))(t1, . . ., td),4

where F(X(x1),..., X(xd)) denotes the distribution function (df) of XI = (X(x1), . . . , X(xd)). If X is a max-stable random field5

with unit Fréchet marginals, then ℓx1,..., xd is homogeneous of order −1 and the polar transformation used in the Pickands6

representation allows us to see it as a moment-based tail dependence tool (see, e.g., Finkenstädt and Rootzén, 2003 or7

Beirlant et al., 2004).8

Our proposal also addresses ℓx1,..., xd as a function of moments of transformations of XI . Specifically, the moments9

e(λ1, . . . , λp) = E

⎛⎝ p⋁
j=1

⋁
i∈Ij

F
λj
X(xi)(X(xi))

⎞⎠ , (λ1, . . . , λp) ∈ (0, ∞)p ,10

where a ∨ b = max(a, b). If p = d = 2, 1
2 e(λ, 1 − λ) equals the λ-madogram of Naveau et al. (2009), unless the addition of11

constant 1
2 (E(U

λ
+ E(U1−λ)) where U is standard uniform. When p = d ≥ 2, e(λ−1

1 , . . . , λ−1
d ) with

∑d
j=1λj = 1 equals the12

generalized madogram considered in Marcon et al. (in press), unless the addition of constant 1
d

∑d
j=1E

(
Uλ−1

j
)
.13

Here we also consider a shifted e(λ1, . . . , λp) by subtracting the constant14

1
p

p∑
i=1

E

⎛⎝⋁
i∈Ij

F
λj
X(xi)(X(xi))

⎞⎠ .15

The referred works consider max-stable random fields with standard Fréchet marginals, except Guillou et al. (2014)16

where ℓx1,x2 (t1, t2) is homogeneous of order −1/η and FX(xi)(t) = P(X(xi) ≤ t) = exp(−σ (xi)t−1/η , i = 1, 2, η ∈ (0, 1],17

corresponding to the bivariate extreme values model obtained in Ramos and Ledford (2011).18

We will also consider that F(X(x1),..., X(xd)) is such that ℓx1,..., xd (t1, . . . , td) is homogeneous of order −1/η and FX(xj)(t) =19

P(X(xj) ≤ t) = exp(−σ (xj)t−1/η), j = 1, . . . , d, for some constants σ (xj) > 0 and η ∈ (0, 1]. Under this hypothesis,20

which includes all the other mentioned works whenever η = 1 and σ (xj) = 1, we define extremal dependence functions21

that provide us coefficients to measure the dependence among XI1 , . . . , XIp through the dependence between M(Ij) =22 ⋁
i∈Ij

FX(xi)(X(xi)), j = 1, . . . , p. We relate the extremal coefficients with the upper tail dependence function introduced23

in Ferreira and Ferreira (2012), which was extended to random fields in Pereira et al. (2017). This is addressed in Section 2.24

We compute the extremal coefficients for several choices of F(X(x1),..., X(xd) in Section 3. Finally we consider an asymptotic tail25

independence coefficient tomeasure an ‘‘almost’’ independence for a class ofmodelswider thanmax-stable ones (Section 4).26

In order to simplify notations, we will write Xi instead of X(xi) and, for any vector a and any subset of its indexes S, we27

will write aS to denote the sub-vector of awith indexes in S.28

2. Model and coefficients of multivariate extremal dependence29

Consider XI = (X1, . . . , Xd) has df FXI and univariate marginals Fi such that30

(i) Fi(t) = exp
(
−σit−1/η

)
, i = 1, . . . , d31

(ii) ℓXI
(t1, . . . , td) = − ln FXI (t1, . . ., td) is homogeneous of order −1/η,32

for some constants σi > 0 and η ∈ (0, 1]. Thus, the copula CXI
of FXI is max-stable, i.e.33

CXI
(us

1, . . . , us
d) = C s

XI
(u1, . . . , ud), s > 0. (1)34

In the following we use notationM(I) =
⋁

i∈I Fi(Xi).35

Lemma 2.1. If XI = (X1, . . . , Xd) satisfies conditions (i) and (ii) then, for all (u1, . . . , up) ∈ (0, 1)p,36

P(M(I1) ≤ u1, . . . , M(Ip) ≤ up) = exp

⎧⎨⎩−ℓXI

⎛⎝ p∑
j=1

(
−

σ1

ln uj

)η

δ1(Ij), . . . ,
p∑

j=1

(
−

σd

ln uj

)η

δd(Ij)

⎞⎠⎫⎬⎭ ,37

where δi(Ij) = 1 if i ∈ Ij and δi(Ij) = 0 otherwise. Analogously, we obtain, for 1 ≤ j < j′ ≤ p,38

P(M(Ij) ≤ uj,M(Ij′ ) ≤ uj′ ) = exp

⎧⎨⎩−ℓXIj∪Ij′

⎛⎝∑
i∈{j,j′}

(
−

σα(Ij∪Ij′ )

ln ui

)η

δα(Ij∪Ij′ )(Ii), . . . ,
∑
i∈{j,j′}

(
−

σω(Ij∪Ij′ )

ln ui

)η

δω(Ij∪Ij′ )(Ii)

⎞⎠⎫⎬⎭ ,39

where α(Ij ∪ Ij′ ) and ω(Ij ∪ Ij′ ) denote the first and last points of Ij ∪ Ij′ , respectively.40
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