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a b s t r a c t

We study an extension of the ARCH model that includes the squared fractional Brownian
motion. We study the statistical properties of the model as the conditions for the existence
of a stationary solution and the moments of the process. We study their asymptotic
behavior of the autocorrelation function of the squared of the process and we prove that
the long memory property of the model holds. We illustrate our results by numerical
simulations.
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1. Introduction 1

The ARCH model has been introduced by Engle in Engle (1982) and then, it has been extended in many directions. One 2

of the first extensions of the ARCH model, called the GARCH model, has been introduced by Bollerslev in Bollerslev (1986) 3

and it also has been the object of various generalizations. We refer to Bollerslev (2008) for a glossary on the vast literature 4

related with ARCH models and their generalizations. 5

The purpose of this work is to study an extension of the ARCH process which is able to capture the fluctuation of the 6

intra-day price and the liquidity existent in the market. Recall that the ARCH(1) model is defined, for every t ∈ Z, by 7

Xt = σtεt 8

with 9

σ 2
t = α0 + α1X2

t−1 (1) 10

where (εt )t∈Z is a sequence of i.i.d. random variable such that Eε0 = 0 and Eε2
0 = 1 and α0 > 0, α1 ≥ 0. 11

In order to capture the fluctuation of the intra-day price in financial markets, we include in the model the price range for 12

a financial asset in a given trading day, that is the difference between the maximum price (denoted ht or the highest price 13

at lag t or trading day t) and the minimum (lowest) price or mt during the same trading day t . As a proxy for the liquidity 14

we employ the number of shares traded during the trading day t or the trading volume, denoted Lt . This variable is added 15

in the formula for the volatility, see relation (3) in the next section of our paper. Therefore, our model weighs the impact 16

of past shocks with their corresponding liquidity. In other words, if the past volatility was accompanied by high liquidity, 17

then its impact on the future volatility will be larger. The model therefore does not allow the ‘‘false shocks’’ to have a high 18

explanatory power, considering that the lack of liquidity creates a distorted picture of reality, and shocks that occur under 19

such conditions must be corrected for their low liquidity. To better illustrate this, let us consider a certain asset A and let us 20

imagine the hypothetical situationwhere during a certain trading day t only two transactionswith asset A took place at large 21
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time intervals and with low trading volume, but with a large value for |ht − mt | (or the difference between the maximum1

price and the minimum (lowest) price), that is the two transactions took place at two significantly different prices. Consider2

also that in another trading session t + i, the asset A has also traded in the range of prices [ht+i,mt+i] (where ht+i = ht3

andmt+i = mt ), but this time the transactions were numerous and the trading volume was high. Obviously, the trading day4

t + iwas more ‘‘turbulent’’ than the day t . But if in both cases only |ht −mt | is considered as a measure of volatility without5

including the corresponding liquidity, then the shocks produced at time t and t+ iwill have an identical impact on the future6

volatility, which would be clearly erroneous, as the shock from t + i is much stronger than the shock from t . See also Tudor7

and Tudor (2014) for an empirical study of a EGARCH model with weighted liquidity.8

Wewill model the liquidity at time t , denoted Lt in the sequel, by the square of the increment of the fractional Brownian9

motion. That is, we will set Lt = ℓ1
(
BH
t+1 − BH

t

)2 for every t, s ∈ Zwhere ℓ1 is a strictly positive constant and (BH
t )t∈Z denotes10

a fractional Brownianmotionwith Hurst exponentH ∈ (0, 1). Recall that the fractional Brownianmotion (fBm in the sequel)11

is defined as a centered Gaussian process with covariance12

EBH
t B

H
s =

1
2

(
|t|2H + |s|2H − |t − s|2H

)
, t, s ∈ Z.13

This process is the only Gaussian self-similar process with stationary increments and it has long memory for H > 1
2 . In the14

last decades, the stochastic analysis for the fBm has known a huge development due to the various applications of the fBm.15

Our choice to model the liquidity by the squared increment of the fBm is determined by several reasons. First, the16

empirical data reveal the existence of the long-memory property in liquidity (see e.g. Tsuji (2002)), therefore fBm appears17

as a good candidate to model it. Second, in order to ensure that the squared volatility (given by the expression (3) remains18

positive, we choose the squared increment of the fBm. The fact that the increments of the fBm are not independent changes19

in a radical way the structure of the model, see Section 2. The Hurst parameter of the fractional Brownian motion will affect20

themoments and the covariance of the ARCHprocess, aswell as the asymptotic behavior of the estimators for the parameters21

of the model. Although the parameter estimation will be the object of a future work, let us mention that the standard least22

squares estimator (LSE) as constructed in e.g. Francq and Zakoïan (2010) does not work in our model. It can be actually23

shown that the standard LSE for the parameter α1 is not consistent if H ̸=
1
2 .24

Weorganized our paper as follows. In Section 2, theARCHmodelwithweighted liquidity is presented. Section 3 is devoted25

to analyze the behavior of the correlation function of the process. A simulation study is reported in the last section.26

2. The ARCHmodel with weighted liquidity27

We introduce our variant of the ARCH model with fBm innovations and we analyze its dependence structure. The model28

is defined as follows: for every t ∈ Z29

Xt = σtεt (2)30

with31

σ 2
t = α0 + α1X2

t−1 + ℓ1Lt−1. (3)32

Here we assume α0 ≥ 0, α1 > 0 and ℓ1 > 0. We assume that (εt )t∈Z is a sequence of i.i.d. random variable such that Eε0 = 033

and Eε2
0 = 1. The sequence (εt )t∈Z is referred to as the driving noise sequence. The parameters α0, α1, ℓ1 are assumed to be34

strictly positive. The sequence (Lt )t∈Z is a sequence of identically distributed positive random variables; in particular ELt = 135

for every t ∈ Z. In addition we will assume that it is independent of the sequence (εt )t∈Z.36

As mentioned in the introduction, we will assume that the new element Lt in the model is the square of the increment of37

the fractional Brownian motion, that is, for every t ∈ Z,38

Lt := LHt =
(
BH
t+1 − BH

t

)2
(4)39

where (BH
t )t∈Z denotes the fractional Brownian motion with Hurst parameter H ∈ (0, 1). Note that the sequence (Lt )t∈Z is40

not independent since the fBm has dependent increments. The case ℓ1 = 0 corresponds to the classical ARCH(1) model41

introduced in Engle (1982).42

2.1. The existence of the stationary solution43

The first step is to prove the existence of a stationary solution to the problem (2)–(3). From (2) and (3)we can immediately44

write, for every t ∈ Z,45

σ 2
t = α0 + α1ε

2
t−1σ

2
t−1 + ℓ1Lt−1. (5)46

We introduce the following notation:47

yt := σ 2
t+1, At := α1ε

2
t , Bt = α0 + ℓ1Lt , t ∈ Z (6)48
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