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a b s t r a c t

Bayesian analysis requires prior distributions for all model parameters, whether of interest
or not. This can be a burden, for a number of reasons, especially when the nuisance
parameters are high- or infinite-dimensional, so there is motivation to find a way around
this without completely abandoning the Bayesian approach. Here we consider a general
strategy of working with a purposely misspecified model to avoid dealing directly with nui-
sance parameters. We focus this investigation on an interesting and challenging problem
of inference on the volatility of a jump diffusion process based on discrete observations.
If we simply ignore the jumps, we can work out precisely the asymptotic behavior of the
Bayesian posterior distribution based on themisspecifiedmodel. This result suggests some
simple adjustments to correct for the effects of misspecification, and we demonstrate that
a suitably corrected version of our purposely misspecified posterior leads to inference on
the volatility that is asymptotically optimal.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Bayesian approach, i.e., where a prior distribution for the unknown parameters is updated to a corresponding
posterior based on observed data and Bayes’ formula, provides a powerful framework for statistical inference. An essential
feature of a Bayesian analysis is that it requires a probability model for all uncertain or variable quantities, namely, prior
distributions for all unknown parameters and a likelihood function corresponding to all observables. Often some of the
parameters are nuisance, i.e., needed to specify a suitable likelihood but not of direct inferential interest, so it is tempting
to avoid specifying priors and computing posteriors for these, to focus resources on the interest parameters only. This
is especially true in so-called semiparametric problems where primary interest is in some finite-dimensional parameter,
but the model itself involves a complex infinite-dimensional nuisance parameter. The goal of this paper is to describe,
through a particular semiparametric example in finance, a new approach by which a Bayesian analysis can directly target
the interest parameters by considering a purposely misspecified model. The idea is that certain biases will appear as a
result of misspecification but, if these biases can be characterized, then some simple corrections to the posterior can be
made and, therefore, we avoid both dealing directly with complex nuisance parameters and the negative consequences of
misspecification.

The particular setting in which we will carry out our ‘‘misspecification on purpose’’ investigation is in the modeling of
asset prices over time. Compared to the classical Black–Scholes models (e.g. Musiela and Rutkowski, 2005), based solely
on a continuous Brownian motion, jump diffusion models – which have both continuous and jump parts – have received
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considerable attention in the last two decades, largely because they can accommodate the rapid, seemingly discontinuous
changes in asset prices often observed in applications. Having the two parts is important because, as several authors have
concluded, neither a purely-continuous nor purely-jump model is sufficient for real applications (e.g., Aït-Sahalia and
Jacod, 2009, 2010; Barndorff-Nielsen and Shepard, 2006; Podolskij, 2006). Indeed, by comparing the observed behavior
of at-the-money and out-of-the-money call option prices near expiration with their analogous theoretical behavior, Carr
and Wu (2003) and Medvedev and Scaillet (2007) argued that both continuous and jump components are necessary to
explain the implied volatility behavior of S&P500 index options. In this paper, we consider a continuous-time process
X = (Xt : t ∈ [0, T ]) over a fixed and finite time horizon [0, T ] that can be decomposed as

Xt = βt + θ1/2Wt + Jt , t ∈ [0, T ], (1)

where βt + θ1/2Wt is a continuous diffusion – with β and θ the drift and volatility coefficients, respectively, and (Wt : t ∈

[0, T ]) a standard Brownianmotion – and J = (Jt : t ∈ [0, T ]) is a pure jump processwith finite jump activity, independent of
W . If the entire process X were observable, thenwe could immediately identify and extract the jumps, reducing the problem
to a relatively simple onewhere the continuous part and jump parts are analyzed separately. However, in our application, we
only observe X at n fixed times 0 < t1 < t2 < · · · < tn < T , like in, e.g., Aït-Sahalia and Jacod (2009) and Figueroa-López
(2009). Having only discrete-time observations means that the continuous and jump parts cannot be disentangled with
certainty, so a separate analysis of the continuous and jump parts is not possible.

The model (1) is characterized by β , θ , and whatever parameters are needed to describe the distribution of J . Certainly all
of these parameters could be of interest, but here we take the volatility coefficient, θ , a fundamentally important measure of
uncertainty or risk (Musiela andRutkowski, 2005), as our parameter of interest; thismakes both the drift and the distribution
of J nuisance parameters. Frequentist approaches are available for inference on θ , e.g., in Aït-Sahalia and Jacod (2014), but,
as mentioned above, we will be pursuing a Bayesian approach here.

A proper Bayesian approach to this problem requires a prior distribution for both the interest and the nuisance
parameters; the data analyst will then get a full joint posterior distribution and proceed to integrate out the nuisance
parameters to get a marginal posterior distribution to be used for inference on θ . Specifying a prior distribution for (β, θ ) is
perhaps not too difficult since reliable prior informationmay be available and, if not, the posterior should be relatively robust
to the choice of prior for a low-dimensional parameter. But dealing with the jump component is far less straightforward.
Indeed, developing a soundparametricmodel for J , and specifying reasonable priors for the correspondingmodel parameters,
is a non-trivial task: how large and how frequent are the jumps? is the jump size and rate constant in time? etc. Rifo
and Torres (2009), for example, in a setting similar to ours in (1), propose a Bayesian model that assumes J is a Poisson
process, which is fine for some applications but certainly would not be appropriate for all. Most importantly, the quality
of marginal inference on θ depends on the quality of the posited model for J , which is unverifiable. To avoid potential bias
from model misspecification, one could go semiparametric, e.g., characterize J by its Lévy measure and put a prior on that,
but this severely complicates the posterior computation and, furthermore, the addition of an infinite-dimensional nuisance
parameter may affect the efficiency of the marginal inference on θ . Ideally, we would be able to directly attack the interest
parameter, to get a posterior distribution for θ without specifying a model and prior for J , computing the full posterior, and
putting ourselves at risk of making biased or inefficient inference on θ as a result of a poor choice of model for J .

Towards this, in Section 2, we consider a purposely misspecified model that completely ignores the jumps, basically
treating the observations as if they arise from a simple diffusion model. This misspecified model is highly regular and
computationally convenient, so if not heavily influenced bymisspecification, then perhaps itwould suffice for valid inference
on θ . A special case of our Theorem 1 says that themisspecified posterior for θ is asymptotically normal but misspecification
causes the center to be off-target and the spread to be too large. Rather than abandon themisspecifiedmodel, we propose, in
Section 3, to correct for the effects of misspecification, by making two simple location and scale adjustments, both of which
rely on an estimator of the quadratic variation of the jump process J . We then show, in Theorem 2, that the corresponding
modified posterior is asymptotically normal, centered around a consistent estimator of the true volatility, with variance
equal to the Cramér–Rao lower bound for optimal/ideal case when there are no jumps, i.e., when the misspecified model
is actually correct. As a consequence, no frequentist or proper Bayesian approach – with a parametric or nonparametric
model for J – provides asymptotically more efficient inference on θ than ours. Moreover, our proposed modification is easy
to implement and we present some simulation results in Section 4 to illustrate that our posterior credible intervals provide
valid uncertainty quantification for the volatility θ .

‘‘Misspecification on purpose’’ is a general idea which is both practically useful and theoretically interesting, with many
potential applications beyond the jump diffusion setup considered here. Our choice to demonstrate the benefits of this
general idea in a relatively simple setting is only for the sake of clarity and conciseness. Similar analysis applies in more
complex situations but, naturally, the details (work in progress) are more involved and would potentially distract from the
general idea.

2. A misspecified model

Assume that we observe the continuous-time process (Xt ) at n distinct time points t1 < · · · < tn, i.e., our observations
are Xt1 , . . . , Xtn ; for notational convenience later on, set t0 = 0 and X0 ≡ 0. For notational simplicity, we will assume
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