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a b s t r a c t

In applications of spatial point processes, it is often of interest to fit a parametric model
for the intensity function. For this purpose Guan et al. (2015) recently introduced a
quasi-likelihood type estimating function that is optimal in a certain class of first-order
estimating functions. However, depending on the choice of certain tuning parameters, the
implementation suggested in Guan et al. (2015) can be very demanding both in terms
of computing time and memory requirements. Using a novel spectral representation, we
construct in this paper an implementation that is computationally much more efficient
than the one proposed in Guan et al. (2015).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider a spatial point process observed on a window W ⊂ R2. Let N(B) denote the number of events in a Borel set
B ⊂ R2. Let ∆u be a small region containing u for u ∈ R2. Assuming that the following two limits exist, the first- and
second-order intensity functions of the process are defined as

λ(u) = lim
|∆u|→0

E{N(∆u)}
|∆u|

, λ2(u1,u2) = lim
|∆u1|,|∆u2|→0

E{N(∆u1)N(∆u2)}
|∆u1||∆u2|

, (1)

where λ(·) is often called the intensity function. A spatial point process is said to be second-order intensity reweighted
stationary (Baddeley et al., 2000) if λ2(u1,u2) = λ(u1)λ(u2)g(u1 − u2), where g(·) is the pair correlation function (Møller
andWaagepetersen, 2004, p. 31).We assume thatλ(u) is given by a parametricmodelλ(u; β) depending on a p×1 parameter
vector β, where λ(u; β) is positive and continuously differentiable with respect to β.

Guan et al. (2015) recently proposed to estimate β by solving an estimating equation of the form

U(β) =

∑
u∈W∩N

φ(u) −

∫
W

φ(s)λ(s; β)ds = 0, (2)
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where φ(·) is a weight function. They showed that the optimal choice of the weight function is the solution of the Fredholm
integral equation:

φ(u) =
λ(1)(u; β)
λ(u; β)

− Tφ(u), (3)

where λ(1)
= dλ/dβ and T is an integral operator given by

Tφ(u) =

∫
W

R(u − v)λ(v; β)φ(v)dv (4)

with a kernel function R(·) = g(·) − 1. The resulting estimating function can be interpreted as a quasi-likelihood score.
It is optimal since it achieves the maximal Godambe information and hence the minimal asymptotic variance among all
estimating functions of the form (2).

To solve (3), Guan et al. (2015) employed the Nyström method by solving a system of linear equations,

φ(uj) +

m∑
k=1

R(uj − uk)λ(uk; β)φ(uk)wk =
λ(1)(uj; β)
λ(uj; β)

, j = 1, . . . ,m, (5)

where uj and wj, j = 1, . . . ,m, are quadrature points and quadrature weights used to approximate the integral in (4). The
solution to (5) is then used in a quadrature approximation of (4) to estimate Tφ(u) and via (3) the weight function φ(u) at
an arbitrary location u.

The Nyström method becomes more accurate with an increasing number of quadrature points m. However, the method
becomes computationally challenging when m is large. In particular it is required to store and invert an m × m covariance
matrix with entries given in terms of R(uj − uk). Guan et al. (2015) proposed a tapering scheme where the jk’th entry is
replaced by zero if the inter-point distance between uj and uk is beyond a certain threshold. However, the amount of storage
can still be enormous and the computational time needed to solve (5) may increase at a rate up to order m3 depending on
the actual value of the threshold used. This is problematic since a large m may be needed in practice in order to adequately
capture the varying intensity and/or dependence in the spatial point process, or to investigate the sensitivity of the parameter
estimates to a range ofm values.

In the next section, we introduce a novel approach that overcomes the challenges faced by the standard Nyströmmethod.
We first develop a novel spectral representation of the kernel function R(·) used in (4) based on which we express R(·) as a
so-called degenerate kernel in the integral equation literature (Jerri, 1985, p. 123). We next convert the Fredholm integral
equation (3) to a new Fredholm equation in the spectral domain. The Nyström method is then applied to solve the spectral
Fredholm equation. Our theoretical results in Section 2.3 regarding computational complexity and memory requirements
as well as the simulation studies show that the new spectral implementation can greatly outperform the existing one when
the grid size m is large. Variance estimation of the resulting estimator can be done extremely fast using the solution to the
spectral Fredholm equation. This is another advantage of our approach over that in Guan et al. (2015), where a double
integral involving R(·) has to be numerically evaluated in order to estimate the variance.

2. The new spectral approach

2.1. A Fredholm integral equation in the spectral domain

Following Jalilian et al. (2013) we assume that R(·) is a positive definite function. This indeed holds e.g. for wide classes of
Cox and cluster point processes. More specifically we assume that R(·) belongs to a parametric family of covariance functions
characterized by a parameter vector θ. For example, for the flexible class of Matérn covariance models (Jalilian et al., 2013),

R(h; θ) = ω2
0

(√
2ν∥h∥/2σ

)ν
Kν

(√
2ν∥h∥/2σ

)
2ν−1Γ (ν)

, for h ∈ R2, (6)

where Γ (·) is the gamma function, Kν(·) is the modified Bessel function of the second kind, θ = (κ, ν, σ )T , ω2
0 =

1/(16πσ 2νκ), and κ , σ and ν are non-negative parameters.
By Bochner’s theorem (Bochner, 1955),

R(h; θ) =

∫
R2

f (ω; θ) exp(−2π iω′h)dω, (7)

where f (·) > 0 is the spectral density of R(·) and i is the imaginary unit. For Matérn covariance models,

f (ω; θ) =
4πω2

0Γ (ν + 1)(2ν)ν

Γ (ν)(2σ )2ν

( ν

2σ 2 + 4π2
∥ω∥

2
)−ν−1

.

By (7),

R(u − v; θ) =

∫
R2

f (ω; θ) exp(2π iω′u) exp(−2π iω′v)dω. (8)
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