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a b s t r a c t

This paper provides a nonparametric test for covariate-adjusted models. The proposed
test statistic, obtained by using the adjusted response and predictors, has the same limit
distribution as when the response and predictors are observed directly.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider a general covariate-adjusted model where the response variable Y , the p-dimensional predictor X =

(X1, . . . , Xp)T and their observable surrogates Ỹ , X̃ are related to each other by the relations

Y = µ(X) + ε, Ỹ = ψ(U)Y , X̃r = φr (U)Xr , r = 1, . . . , p. (1.1)

Here U is an observable confounder and ψ(U) and φr (U) are unknown distorting functions. The covariate-adjusted model
was first introduced in Sentürk and Müller (2005), where they investigated the linear relationship of the fibrinogen level
and the serum transferrin level in hemodialysis patients. However both fibrinogen level and serum transferrin level are
measured with a confounding effect from body mass index. They pointed out that it is reasonable to assume that the effect
is multiplicative, with a factor that is an unknown function of body mass index. Similarly, Cui et al. (2009) considered to
estimate the glomerular filtration rate by the serum creatinine level. With the body surface area as the distortion effect, a
study of nonlinear covariate-adjusted model was conducted.

Most of the literature is about the estimation of the conditional mean function µ(X). Sentürk and Müller (2005, 2006)
proposed their estimators for the linear covariate-adjusted model. Sentürk (2006) extended the linear model to a varying
coefficient one, and Sentürk and Müller (2009) discussed the generalized linear model. Cui et al. (2009) and Zhang
et al. (2012) presented the parameter estimation in more general nonlinear regression models. Partial linear models were
considered by Zhang et al. (2013b). Without the parametric structure assumption, Delaigle et al. (2016) put forward several
nonparametric covariate-adjusted estimators of µ(X). Other literature about covariate-adjusted models include Li et al.
(2010), Nguyen and Sentürk (2007, 2008), Nguyen et al. (2008), Sentürk andMüller (2006, 2009), Sentürk andNguyen (2009)
and Zhang et al. (2014, 2013a).
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With so many estimation methods for different models, it is natural to ask whether the covariate-adjusted model
possesses certain structure. To avoidwrong inference, a formalmodel checking procedure should be processed before further
analysis. However, there is few work that focused on model checking for covariate-adjusted model in literature. Zhang et al.
(2015) proposed a residual based empirical process test statistic and used bootstrap to calculate the critical values. There
is no valid local smoothing test in literature for testing a parametric assumption of covariate-adjusted model. In this paper,
we make attempts to fill this void. To check whether the parametric function structure is plausible, the null and alternative
hypotheses are formulated as follows:

H0 : µ(X) = m(X; θ0) for θ0 ∈ Θ ⊂ Rd, versus
H1 : µ(X) ̸= m(X; θ ) for all θ ∈ Θ ⊂ Rd.

In this paper, we propose a test for checking H0 in the context of covariate-adjusted model. The observed variables Ỹ and
X̃ are firstly adjusted to estimate the latent response Y and predictor X . By plugging the adjusted variables into a local
smoothing test statistic, a test statistic is built for the covariate-adjusted model. Large sample properties are established to
support the test. Compared to the test in Zhang et al. (2015), the proposed test is widely applicable and easy to implement.

The paper is organized as follows: we describe the covariate-adjusted model and propose a local smoothing test to check
H0 in Section 2. In Section 3, we present the large sample properties under the local alternative hypothesis. Section 4 reports
the simulation results and a real data application. The assumptions are postponed to Appendix A and the proofs are in the
Supplement.

2. Methodology

To identifyψ(U) and φr (U), we assume that ε, X andU aremutually independent,U ∈ [0, 1], andψ(U), φr (U) are positive
functions that satisfy

E[ψ(U)] = 1, E[φr (U)] = 1, for r = 1, . . . , p. (2.1)

The condition (2.1) means that there is no distortion effect on average, which is similar to E[U] = 0 for the classical additive
measurement errorW = X + U . Then according to above assumptions, we know

E[|Ỹ |
⏐⏐U = u] = ψ(u)E[|Y |], and E[|X̃r |

⏐⏐U = u] = φr (u)E[|Xr |].

Since (2.1) holds, E[|Y |] and E[|Xr |] are equal to E[|Ỹ |] and E[|X̃r |] respectively. In addition, the two conditional means at left
hand side can be estimated by nonparametric estimators. Assume the observed data {(ỹi, x̃i, ui), i = 1, . . . , n} are generated
by model (1.1) where x̃i = (x̃i1, . . . , x̃ip)T. LetM(.) be a 4-th order kernel function (Cui et al., 2009; Zhu and Fang, 1996) and
Mg (.) = M(./g)/g where g is a bandwidth. To proceed further, denote

ψ̂0(u) =
1
n

n∑
i=1

Mg (u − ui)|ỹi|, φ̂r0(u) =
1
n

n∑
i=1

Mg (u − ui)|x̃ir |, (2.2)

p̂(u) =
1
n

n∑
i=1

Mg (u − ui), Ê[|X |] =
1
n

n∑
i=1

|x̃i|, Ê[|Y |] =
1
n

n∑
i=1

|ỹi|.

Then ψ̂(u) = ψ̂0(u)/(p̂(u)Ê[|Y |]) and φ̂r (u) = φ̂r0(u)/(p̂(u)Ê[|Xr |]). Therefore (yi, xi), i = 1, . . . , n can be estimated by

ŷi = ỹi/ψ̂(ui), x̂ir = x̃ir/φ̂r (ui), r = 1, . . . , p. (2.3)

This covariate-adjusted procedure is slightly different to that in Zhang et al. (2015), because we use the method suggested
in Delaigle et al. (2016) to drop the conditions that E[Xr ] > 0 and E[Y ] > 0. Cui et al. (2009) indicated that under H0, a√
n-consistent estimate θ̂n of θ0 can be obtained by nonlinear least square method with {(ŷi, x̂i)} where x̂i = (x̂i1, . . . , x̂ip)T.

In other words, θ̂n has the same first-order asymptotic properties as the classical least squares estimator when Y and X are
observable. This motivates us to replace {(yi, xi)} in a test statistic and to check whether the convergence rate can be kept.
Denote ε̂i = ŷi − m(x̂i, θ̂n). We define a test statistic as

Vn =
1

n(n − 1)

n∑
i=1

n∑
j̸=i

Kh(x̂i − x̂j)ε̂iε̂j, (2.4)

where Kh(.) = K (./h)/h and K (.) is a kernel function which may be different to M(.). Note Vn is an empirical version of
E{εE[ε|X]fX (X)} = E{E2

[ε|X]fX (X)} which is zero if H0 is true and positive under H1. So if Vn is a large positive scale, we
should reject the null hypothesis H0. In next section, we will investigate the asymptotic properties of the test statistic Vn
and specify its reject criterion.
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