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a b s t r a c t

We propose a new construction for nested designs, called General Nested Latin Hypercube
designs (GNLHs). Such designs contain nested Latin hypercube designs as special cases.
Besides achieving maximum uniformity in one dimension, each layer of GNLHs is flexible
in run sizes. Moreover, theoretical results and numerical simulations show that GNLHs
perform well on the sampling variance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Computer experiments are playing a significant role in science and engineering (Fang et al., 2005; Sacks et al., 1989; 2

Santner et al., 2013). A main goal in computer experiments is to estimate the expected output of a computer model given a 3

distribution of inputs. Latin hypercube designs (LHDs) proposed in McKay et al. (1979) are feasible to address this issue. An 4

n×mmatrix H =
(
hij

)
is called a Latin hypercube if each column of H is a permutation of {1, . . . , n} and all the columns are 5

generated independently. The Latin hypercube design D =
(
dij

)
of n runs in d factors is obtained through 6

dij =
(
hij − ϵij

)
/n, for i = 1, . . . , n, j = 1, . . . , d (1) 7

where ϵij are independent uniform variables on [0, 1). The design D achieves maximum uniformity in univariate margins: 8

when D is projected onto each of d variables, one and only one of the n design points fall within each of the n small intervals 9

defined by [0, 1/n) , [1/n, 2/n) , . . . , [(n − 1) /n, 1). We refer to this design as ordinary Latin hypercube design hereinafter. 10

Stein (1987) proved that a Latin hypercube sample provides a smaller variance for the sample mean compared with the 11

independently identical distribution sample. 12

Almost all of large computer experiments can be run at different levels of accuracy: the high accuracy experiments 13

are slow and expensive, while the low accuracy experiments are fast but less accurate. Multi-accuracy experiments have 14

received considerable attention over the past few years, such as Dewettinck et al. (1999) for simulating a GlattGPC-1 15

fluidized-bed unit and Choi et al. (2008) for an aircraft design application. Many modelling methods for multi-accuracy 16

experiments have been proposed, for example Bayesian calibration (Kennedy and O’Hagan, 2001), Bayesian hierarchical 17

modelling (Qian and Wu, 2008) and modelling for computer and physical experiments (Reese et al., 2004). Nested Latin 18

Hypercube Designs (NLHDs) proposed in Qian (2009) are desirable to deal with these multi-accuracy experiments because 19

for every run in the designs of the high accuracy experiments, the responses from the low accuracy experiments are also 20
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available. So it is easier to refine the low accuracy experiments data with the high accuracy experiments data and use the1

refined data to obtain a more appropriate model. Furthermore, a nested Latin hypercube design with two layers is a special2

Latin hypercube design that contains a smaller Latin hypercube design as a subset, where the whole set is the first layer and3

the embedded smaller Latin hypercube design is the second layer. This construction guarantees that each layer of NLHDs4

is excellent in projective uniformity. However, NLHDs and most of their variants, such as these designs discussed in He5

and Qian (2011), have the restriction that the run size of the low accuracy experiments have to be a multiple of the high6

accuracy experiments. Kong et al. (2016) proposed a new construction for nested designs (referred to as SDs hereinafter)7

which accommodates arbitrary sizes for different layers, but the first layer of SDs cannot achieve maximum uniformity in8

univariate margins. So nested designs with more flexible run sizes and better sampling properties are required to deal with9

the situation that the run sizes of the low accuracy experiments are not a multiple of the run sizes of the high accuracy10

experiments.11

In this paper, we propose general nested Latin hypercube designs which can suit for different layers of arbitrary sample12

sizes.We refer to these new designs as GNLHs for convenience.When the run size of the first layer is amultiple of the second13

layer, GNLHs are equivalent to NLHDs. Moreover, each layer of GNLHs can achieve maximum uniformity in one dimension.14

The paper is organized as follows. In Section 2, we introduce the construction of GNLHs. Some statistical properties of15

GNLHs are shown in Section 3. Section 4 concludes this paper. All the proofs are given in Appendix.16

2. Construction for GNLHs17

Here are some useful definitions. For an integer k ≥ 1, let Zk denote the set {1, . . . , k}. ⌈·⌉ and ⌊·⌋ denote the ceiling and18

floor function, respectively. The least common multiple and the greatest common divisor of k integers ai, i = 1, . . . , k, are19

denoted by lcm (a1, . . . , ak) and gcd (a1, . . . , ak), respectively. For a set S, let |S| denote the number of elements of S. For a20

matrix A, let A (:, j) be its jth column, A (i, :) be its ith row, and A (i, j) be its (i, j)th entry. For sets A and B, A \ B denotes set A21

minus set B. LHD(n, d) denotes the ordinary Latin hypercube design with n runs and d factors.22

For two fixed integers n > m > 0, let l = lcm (m, n) , n′
= l/m,m′

= l/n. We propose a nested vector πn×1 which is23

composed by two vectors τm×1 and ρ(n−m)×1. LetMm′,n′ denote the (n′
− m′

+ 1) × n′ circulant matrix as follows:24

Mm′,n′ =

⎡⎢⎢⎣
1 2 · · · n′

n′ 1 · · · n′
− 1

...
...

...
...

m′
+ 1 m′

+ 2 · · · m′

⎤⎥⎥⎦ .25

Then, the vector πm×1 is generated in the following four steps:26

Step 1: Draw a vector vm×1 where v (1) is a random integer in Zn′ , and for i = 2, . . . ,m and a random integer r ∈ Zn′−m′+1,27

v (i) = Mm′,n′ (r, v (i − 1)).28

Step 2: Draw a permutation τ = (τ (1) , . . . , τ (m))T on {v (i) + n′(i − 1)|i = 1, . . . ,m} randomly. Let S = Zn \29

{⌈
τ(1)
m′ ⌉, . . . , ⌈

τ(m)

m′ ⌉}.30

Step 3: Draw a permutation ρ = (ρ (1) , . . . , ρ (n − m))T on set {t (i) + m′ (si − 1) | i ∈ Zn−m} where t (i) is an arbitrary31

integer in Zm′ and si is the ith element of S in ascending order.32

Step 4: Stack τ and ρ to generate a vector πn×1, that is: π =
(
τ T , ρT

)T .33

For the obtained vectors, a proposition is constructed as follows:34

Proposition 2.1. Consider the vectors τ , π constructed above and a, b ∈ Zl, we have35

1. for any i = 1, . . . ,m, j = 1, . . . ,m, and i ̸= j36

⌈
τ (i)
m′

⌉ ̸= ⌈
τ (j)
m′

⌉; (2)37

2. the probability mass function for π (i), i = 1, . . . , n, is38

P{π (i) = a} =
1
l
, for all a ∈ Zl. (3)39

Eq. (2) indicates that |S| = n − m, so |ρ| = n − m is satisfied, which guarantees the validity of Step 3. We construct a40

general nested Latin hypercube of n runs in d factors by taking their columns to be d independently generated π . For three41

integers n > m > 0, d > 0, GNLH(m, n, d) denotes a general nested Latin hypercube design where the first layer has n runs42

and the second layer has m runs. When n is a multiple of m, d > 0, M becomes a n
m ×

n
m matrix, and simple analysis shows43

that GNLH(m, n, d) has the same construction as NLHD(m, n, d). An example is given to illustrate the construction. Note that44

each dimension of the design is generated independently through the same processes, we only construct one-dimensional45

GNLHs for illustration.46
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