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a b s t r a c t

Themultivariate linear regressionmodel is an important tool for investigating relationships
between several response variables and several predictor variables. The primary interest is
in inference about the unknown regression coefficient matrix. We propose multivariate
bootstrap techniques as a means for making inferences about the unknown regression
coefficient matrix. These bootstrapping techniques are extensions of those developed in
Freedman (1981), which are only appropriate for univariate responses. Extensions to the
multivariate linear regression model are made without proof. We formalize this extension
and prove its validity. A real data example and two simulated data examples which offer
some finite sample verification of our theoretical results are provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

The linear regression model is an important and useful tool in many statistical analyses for studying the relationship 2

among variables. Regression analysis is primarily used for predicting values of the response variable at interesting values 3

of the predictor variables, discovering the predictors that are associated with the response variable, and estimating 4

how changes in the predictor variables affects the response variable (Weisberg, 2005). The standard linear regression 5

methodology assumes that the response variable is a scalar. However, itmay be the case that one is interested in investigating 6

multiple response variables simultaneously. One could perform a regression analysis on each response separately in this 7

setting. Such an analysis would fail to detect associations between responses. Regression settings where associations of 8

multiple responses are of interest require a multivariate linear regression model for analysis. 9

Bootstrapping techniques are well understood for the linear regression model with a univariate response (Bickel and 10

Freedman, 1981; Freedman, 1981). In particular, theoretical justification for the residual bootstrap as a way to estimate 11

the variability of the ordinary least squares (OLS) estimator of the regression coefficient vector in this model has been 12

developed (Freedman, 1981). Theoretical extensions of residual bootstrap techniques appropriate for the multivariate 13

linear regression model have not been formally introduced. The existence of such an extension is stated without proof 14

and rather implicitly in subsequent works (Freedman and Peters, 1984; Diaconis and Efron, 1983). In this article we show 15

that the bootstrap procedures in Freedman (1981) provide consistent estimates of the variability of the OLS estimator 16

of the regression coefficient matrix in the multivariate linear regression model. Our proof technique follows similar logic 17

as Freedman (1981). The generality of the bootstrap theory developed in Bickel and Freedman (1981) provide the tools 18

required for our extension to the multivariate linear regression model. 19

2. Bootstrap for the multivariate linear regression model 20

The multivariate linear regression is 21

Yi = βXi + εi, (i = 1, . . . , n), (1) 22
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where Yi ∈ Rr and r > 1 in order to have an interesting problem, β ∈ Rr×p, Xi ∈ Rp, and the ε′

is ∈ Rr are errors having1

mean zero and variance–covariance matrix Σ where Σ > 0. It is assumed that separate realizations from the model (1)2

are independent and that n > p. We further define X ∈ Rn×p as the design matrix with rows XT
i , Y ∈ Rn×r is the matrix3

of responses with rows Y T
i , and ε ∈ Rn×r is the matrix of all errors with rows εT

i . The OLS estimator of β in model (1) is4

β̂ = YTX(XTX)−1. We let ε̂ ∈ Rn×r denote the matrix of residuals consisting of rows ε̂T
i = (Yi − β̂Xi)T . The multivariate5

linear regression model assumed here is slightly different than the traditional multivariate linear regression model. The6

traditional model makes the additional assumptions that the errors are normally distributed and the design matrix X is7

fixed.8

We consider two bootstrap procedures that consistently estimate the asymptotic variability of vec(β̂) under different9

assumptions placed upon the model (1), where the vec operator stacks the columns of a matrix so that vec(β̂) ∈ Rrp×1. The10

first bootstrap procedure is appropriate when the design matrix X is assumed to be fixed and the errors are constant. In11

this setup, residuals are resampled. The second bootstrap procedure is appropriate when (XT
i , εT

i )
T are realizations from a12

joint distribution. In this setup, cases (XT
i , Y T

i )
T are resampled. It is known that bootstrapping under these setups provides13

a consistent estimator of the variability of var(β̂) in model (1) when r = 1 (Freedman, 1981). Convergence theorems are14

stated in terms of the Mallows metric for two probability measures µ, ν in Rk. The Mallows metric is15

dpl (µ, ν) = inf
U∼µ,V∼ν

E1/l (
∥U − V∥

l) . (2)16

A brief description of useful properties of (2) is stated in the beginning of Section 4.We now provide the neededmultivariate17

bootstrap extensions.18

2.1. Fixed design19

We first establish the residual bootstrap of Freedman (1981) when X is assumed to be a fixed design matrix. Resampled,20

starred, data is generated by the model21

Y∗
= Xβ̂T

+ ε∗, (3)22

where ε∗
∈ Rn×r is the matrix of errors with rows being independent. The rows in ε∗ have common distribution F̂n which23

is the empirical distribution of the residuals from the original dataset, centered at their mean. Now β̂∗
= Y∗

T
X(XTX)−1 is24

the OLS estimator of β from the starred data. This process is performed a total of B times with a new estimator β̂∗ computed25

from (3) at each iteration. We then estimate the variability of vec(β̂) with26

var∗
{
vec(β̂)

}
= (B − 1)−1

B∑
b=1

{
vec(β̂∗

b ) − vec(β̄∗)
}{

vec(β̂∗

b ) − vec(β̄∗)
}T

27

where β̂∗

b is the residual bootstrap estimator of β at iteration b and β̄∗
= B−1∑B

b=1β̂
∗

b . We summarize this bootstrap28

procedure in Algorithm 1.29

Algorithm 1. Bootstrap procedure with fixed design matrix.30

Step 1. Set B and initialize b = 1.31

Step 2. Sample residuals from F̂n, with replacement, and compute Y∗ as in (3).32

Step 3. Compute β̂∗

b = Y∗
T
X(XTX)−1, store vec(β̂∗

b ), and let b = b + 1.33

Step 4. Repeat Steps 2–3 B − 1 times.34

Before the theoretical justification of the residual bootstrap is formally given, some important quantities are stated. The35

residuals from the regression (3) are ε̂∗
= Y∗

− Xβ̂∗
T
. The variance–covariance matrix Σ in model (1) is then estimated by36

Σ̂ = n−1
n∑

i=1

ε̂îε
T
i − µ̂2, µ̂2

=

(
n−1

n∑
i=1

ε̂i

)(
n−1

n∑
i=1

ε̂i

)T

.37

Likewise, the variance–covariance estimate from the starred data is38

Σ̂∗
= n−1

n∑
i=1

ε̂∗

i ε̂
∗
T

i − µ̂∗
2
, µ̂∗

2
=

(
n−1

n∑
i=1

ε̂∗

i

)(
n−1

n∑
i=1

ε̂∗

i

)T

.39

Let Ik denote the k × k identity matrix. Theorem 1 provides bootstrap asymptotics for the regression model (1). It extends40

Theorem 2.2 of Freedman (1981) to the multivariate setting.41

Theorem 1. Assume the regression model (1) where the errors have finite fourth moments. Suppose that n−1XTX → ΣX > 0.42

Then, conditional on almost all sample paths Y1, . . . , Yn, as n → ∞,43
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