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a b s t r a c t

This paper studies the nonparametric estimator of the quantile function under length-
biased and right censored data, with the property of length-bias that the residual lifetime
share the same distribution as the truncation time. A nonparametric estimator of the
quantile function is proposed based on the improved product-limit estimator of distri-
bution function that takes into account the auxiliary information about the length-biased
sampling. Asymptotic properties of the estimator are derived, and numerical simulation
studies are conducted to assess the performance of the proposed estimator, an application
is also given using the Channing house data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the prevalent study for survival analysis, the right-censored time-to-event data is often collected subject to the left-
truncation, since the individuals who have experienced the failure event before the recruitment time are not observable.
When the incidence of the disease follows a stationary Poisson process, the left-truncated data is called as ‘the length-
biased data’. As a special case of the left truncation, the length-biased sampling means that the left-truncation variable
is uniformly distributed, and the sampling probability of survival time is proportional to its length. See for example, the
dementia survey by the Canadian Study of Health and Aging (1994), where over 10,000 elderly Canadians (65 years or older)
living in institutions or at homewere screened for dementia in 1991. Such survival times arising from length-biased sampling
are left truncated by uniformly distributed random truncation timeswhen the incidence of disease onset follows a stationary
Poisson process (Winter and Földes, 1988; De Uña-álvarez, 2004). It has been shown that the residual lifetime shares the
same distribution to the truncation time in length-biased data (Huang and Qin, 2011). Another real length-biased example
is the Channing house dataset (Hyde, 1980), see Section 5.

Due to the fact that ignoring the length-biased information can lead to substantial overestimation of the survival time,
the classical survival analysis methods such as the Kaplan–Meier estimator would fail when the sample is length-biased. In
recent years, a lot of literatures on the statistical inferences for the length-biased data have been published, such as Addona
andWolfson (2006), Shen et al. (2009), Qin and Shen (2010), Carone et al. (2012), Huang and Qin (2012), Huang, et al. (2012)
Chen et al. (2015), Qiu et al. (2016), etc.

Based on the different type of complex data, various methods for the estimation of the quantile function have been
proposed. Under the random right censorship model, Aly et al. (1985) studied the quantile process of the product-limit
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(PL) estimator via strong approximation methods. For left-truncation data, Gürler et al. (1993) derived a Bahadur type
representation and confidence intervals and bands for the quantile function of the pertaining product-limit estimator. Some
other literatures on estimation of quantile function are under the left-truncation and right-censoring model. Zhou (1997)
deeply discussed the quantile function estimator by empirical process technology, and obtained some precise Bahadur type
representations for the estimator. Using the kernel smoothing method, Zhou et al. (2000) obtained asymptotic normality
and a Berry–Esseen type bound for the kernel quantile estimator. Wang et al. (2015) proposed a nonparametric maximum
likelihood estimator of quantile residual lifetime, showed the asymptotic properties of the estimator, and illustrated some
other good statistical property of the estimator through the simulation studies and a real data analysis. Some other literatures
include Takeuchi et al. (2006), Zhao et al. (2011), Liang and de Uña-Álvarez (2011) and Zhang and Tan (2015) among others.

In this paper, a nonparametric estimator for the quantile of distribution function (d.f.) for the length-biased and right-
censored (LBRC) data is proposed. The proposed quantile estimate function is based on the improved product-limit estimator
of distribution function, which takes the auxiliary information about the length-biased sampling scheme into account. The
rest of the paper is organized as follows. Section 2 introduces some notations and the proposed quantile estimator. Section 3
presents some large sample properties, such as the consistency, two Bahadur type representations and the asymptotic
normality. In Section 4, some simulation studies are conducted to evaluate the behavior of the quantile estimator. In
Section 5, a real dataset is analyzed to illustrate the application of our approach. Finally, proofs of the theoretical results
are provided in Appendix A, however, several related lemmas and their proofs are postponed to Supplementary materials.

2. Nonparametric quantile estimation

Denote (A0, T 0, C0) as a random vector, where T 0 is the survival time of interest with continuous distribution function
F (·) and density function f (·), A0 is the left truncation time with distribution function FA(·), C0 is the total censored time.
Without loss of generality, it is assumed that they are all nonnegative random variables with C0 and (A0, T 0) being mutually
independent, but T 0 and C0 may be dependent.

Define Y 0
= T 0

∧ C0
= min(T 0, C0) and the indicator of censoring status ∆0

= I(T 0
≤ C0). Then in the setting of

LBRC, nothing is observed if Y 0 < A0, only the individuals with Y 0
≥ A0 can be observed. Moreover, it is assumed that

the survival time T 0 is independent of the calendar time of the disease onset W 0. In this model, a reasonable assumption
is α = P(Y 0

≥ A0) > 0, and the calendar time of the disease onset is uniformly distributed on the interval between zero
and the sampling time. For simplicity, the superscript 0 of letter is dropped to indicate the observed time without special
statement, for example, write T as the observed survival time, V = T − A as the corresponding residual time, etc. Then
for each individual, the observed random vector is (A, Y ,∆), whose n independent and identically distributed copies are
denoted as {(ai, yi, δi), i = 1, 2, . . . , n}.

Define

Q̃ (t) =
1
n

n∑
i=1

[I(ai ≤ t) + δiI(yi − ai ≤ t)]

and

K̃ (t) =
1
n

n∑
i=1

[I(ai ≥ t) + I(yi − ai ≥ t)].

Then the survival d.f. of A can be consistently estimated by Kaplan–Meier type estimator S̃A(t) =
∏

u∈[0,t]{1 −
dQ̃ (u)
K̃ (u)

}. And
a nonparametric composite likelihood estimator (Huang and Qin, 2011) for F (·) combining with LBRC information was
constructed by

1 − F̃n(t) =

∏
u∈[0,t]

{1 − dΛ̃(u)} (2.1)

where

Λ̃(t) =

∫ t

0

dN̄(u)

R̃n(u)
, R̃n(t) = n−1

n∑
j=1

I(yj ≥ t) − S̃A(t), N̄(t) = n−1
n∑

j=1

δjI(yj ≤ t).

Recently, Shi et al. (2015) successfully established an almost sure representation for the estimator F̃n(t), which help us to
study the properties of quantile function. As well known, the quantile function for a d.f. G(·) is defined as G−1(p) = inf{u :

G(u) ≥ p}, p ∈ (0, 1).
This paper focuses on estimating the quantile function for F−1(p) for some constant 0 < p < 1 based on LBRC data. A

natural estimator defined via the product-limit estimator (2.1) is proposed by

F̃−1
n (p) = inf{u : F̃n(u) ≥ p}, p ∈ (0, 1), n = 1, 2, . . . . (2.2)

This is in contrast to the nonparametricmaximum likelihood estimator (Vardi, 1989) that has not closed-form in the presence
of censoring.
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