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a b s t r a c t

After a short review of the properties of the maximum likelihood estimator for discrete
timeMarkov processes, we obtain a moderate deviation result for such an estimator under
some regularity conditions using the Gärtner–Ellis theorem for random processes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Let {Xn, n ≥ 1} be a stochastic process defined on a probability space (Ω,B, Pθ ) taking values in a measurable space 2

(X,FX ).Weassume that the parameter θ ∈ Θ ⊂ R but is unknown. Supposewe observe a sample (X1, . . . , Xn) of the process. 3

The problem of estimation of the parameter θ based on the observation (X1, . . . , Xn) has been discussed in the literature over 4

the last several years. For instance, see Billingsley (1961) and Prakasa Rao (1972, 1973, 1979) for the case of the discrete 5

timeMarkov processes and Basawa and Prakasa Rao (1980) and Grenander (1981) for stochastic processes in general among 6

others. The problem of interest is to study the rate of convergence of the maximum likelihood estimator (MLE) θ̂n of the 7

parameter θ based on the observation (X1, . . . , Xn).Results onmoderate deviations for themaximum likelihood estimator for 8

the case of independent and identically distributed observations were proved by Gao (2001) and for the case of independent 9

but possibly not identically distributed observations by Xiao and Liu (2006). Miao and Chen (2010) gave a simpler proof 10

to obtain these results under weaker conditions using Gärtner–Ellis theorem (cf. Hollander, 2000, Theorem V.6). Miao and 11

Wang (2014) improved the result in Miao and Chen (2010) by weakening the exponential integrability condition. 12

Our aim in this paper is to extend the results in Miao and Chen (2010) to maximum likelihood estimator for Markov 13

processes. We give a short introduction to maximum likelihood estimation for Markov processes due to Billingsley (1961) 14

for completeness and to introduce the notation. 15

Suppose the process {Xn, n ≥ 1} is a Markov process for each θ ∈ Θ ⊂ R, with stationary transition measure 16

pθ (x, A) = Pθ (Xn+1 ∈ A|Xn = x), A ∈ FX . (1.1) 17

We assume that, for each θ ∈ Θ, the function pθ (x, A) is a measurable function of x for each fixed A ∈ FX and a probability 18

measure on FX for fixed x. It is known that such a set of transition measures give rise to a Markov process with stationary 19
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transition measure given by (1.1) (cf. Doob, 1953). We assume that, for each θ ∈ Θ, the transition measures admit a unique1

stationary probability distribution, that is, there is a unique probability measure pθ (.) on FX such that2

pθ (A) =

∫
X
pθ (x, A) pθ (dx), A ∈ FX .3

Here after Eθ (.) will denote the expectation computed under the assumption that θ is the true parameter. We will not4

assume that pθ (.) is the initial distribution. The initial distribution has no effect on the conditional expectation Eθ (.|X1) as the5

conditional expectation involves only the transition probability measure. We will assume that there is a σ -finite measure λ6

on (X ,FX ) with respect to which all the transition measures have densities f (x, y; θ ). Hence7

pθ (x, A) =

∫
A
f (x, y; θ ) λ(dy), A ∈ FX .8

We will assume that the initial distribution has a density f (x; θ ) with respect to λ. We assume that the function f (x; θ ) is9

jointly measurable in (x, θ ) and the function f (x, y; θ ) is jointly measurable in (x, y, θ ).10

Suppose (x1, . . . , xn) is an observation on the discrete timeMarkov process observed up to time n. Then the log-likelihood11

function of the observation (x1, . . . , xn) is12

log f (x1; θ ) +

n−1∑
k=1

log f (xk, xk+1; θ ).13

The term log f (x1; θ ) in the likelihood function is dominated by the other terms in the log-likelihood function as n tends to14

infinity and the information about the parameter θ in the initial observation can be ignored as we are studying the large15

sample properties of the estimators for the parameter θ. Hence, we will take the log-likelihood function, here after, to be16

ℓn(x1, . . . , xn; θ ) =

n−1∑
k=1

log f (xk, xk+1; θ ).17

If we assume that the initial observation x1 is a constant and does not depend on the parameter θ, then the above expression18

will be the exact log-likelihood. Suppose the following regularity conditions hold:19

(C0) The parameter space Θ is open in R.20

(C1) For any x, the set of y for which f (x, y; θ ) > 0 does not depend on the parameter θ.21

(C2) For any x and y, the function f (x, y; θ ) is thrice differentiable for θ ∈ Θ and the derivatives are continuous in22

θ ∈ Θ. Here after we denote the ith derivative of f (x, y; θ ) with respect to θ evaluated at θ ′ as f (i)(x, y; θ ′) and let23

ℓ(x, y; θ ) = log f (x, y; θ ).24

(C3) For any θ ∈ Θ, there exists a neighbourhood G(θ, δ) of θ for some δ > 0, such that25 ∫
X

sup
θ ′∈G(θ,δ)

|f (i)(x, y; θ ′)|λ(dy) < ∞, i = 1, 2,26

and27

Eθ [ sup
θ ′∈G(θ,δ)

|ℓ(3)(X1, X2; θ ′)|] < ∞.28

(C4) Furthermore29

0 ≤ Eθ [|ℓ
(1)(X1, X2; θ )|

2
] < ∞.30

Let I(Xk; θ ) denote the conditional Fisher information in the observation in Xk+1 given the observations Xi, 1 ≤ i ≤ k or31

equivalently Xk by the Markov property of the process {Xi, i ≥ 1} when the true parameter is θ.32

In view of Theorem 1.1 stated below, it follows that33

1
n

n−1∑
k=1

I(Xk; θ )34

tends to a limit, say, I(θ ) a.s. as n → ∞. This limit does not depend on the initial distribution of the Markov process.35

Suppose that 0 < I(θ ) < ∞.36

In addition to the conditions (C1) to (C4), we assume the following condition holds:37

(C5) For each θ ∈ Θ, the stationary distribution pθ (.) exists and is unique and has the property, that for each x ∈ X , the38

probability measure corresponding to the probability density function pθ (x, .) is absolutely continuous with respect39

to the probability measure corresponding to the probability density function pθ (.).40

Billingsley (1961) proved the following strong law of large numbers for Markov processes.41
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