Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/stapro)

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A note on martingale deviation bounds

Thomas R. Boucher

Department of Mathematics, Texas A&M University-Commerce, Commerce, TX 75428, USA

a r t i c l e i n f o

a b s t r a c t

Article history: Received 5 September 2015 Accepted 30 December 2015 Available online 6 January 2016

Keywords: Martingale Martingale difference sequence Deviations

1. Introduction

Let $\{Y_i\}_{i=1}^n$ be a martingale difference sequence with $E|Y_i|^p = M$ for some $p > 1$. Let $S_n = \sum_{i=1}^n Y_i$. A good deal of work (see for example [Lesigne](#page--1-0) [and](#page--1-0) [Volny,](#page--1-0) [2001;](#page--1-0) [Li,](#page--1-1) [2003\)](#page--1-1) has gone into developing upper bounds for probabilities of large deviations for maxima of sums of the martingale difference sequence, i.e., for a given $\lambda > 0$ interest is in bounds for

Let ${Y_i}_{i=1}^n$ be a martingale difference sequence and S_n =

estimates derived from sampling the chain are reliable.

deviation bounds for martingale difference sequences generally focus on upper bounds for probabilities of large deviations $P(S_n > \lambda)$, particularly of maxima of S_n . In this article bounds for probabilities of moderate deviations $P(S_n < \lambda)$ are studied. The motivation is estimating the probability that the cumulative drift of a Markov chain is moderate, and thus

$$
P\left(\max_{1\leq i\leq n}|S_i|>\lambda\right).
$$

This article concerns upper bounds for probabilities of moderate, rather than large, deviations, i.e., bounds for

$$
P\left(\max_{1\leq i\leq n}|S_i|<\lambda\right).
$$

Lower bounds can be obtained from existing results which provide upper bounds for

$$
P\left(\max_{1\leq i\leq n}|S_i|>\lambda\right).
$$

The motivation for studying moderate deviations comes from Markov chain applications. The cumulative drift of a Markov chain can be expressed as the sum of a martingale difference sequence and two other terms. When the cumulative drift of a Markov chain is moderate the Markov chain is near a stable region in the state-space and sampling can occur with an eye on, for example, producing good estimates of $E[f(X_t)]$ using $1/n \sum_{i=0}^{n-1} f(X_i)$ (see [Kontoyiannis](#page--1-2) [et al.,](#page--1-2) [2006\)](#page--1-2). Thus, it is worthwhile to monitor the drift of the chain in order to improve the effectiveness of MCMC techniques, as one example application.

Specifically, let $\{X_t\}$ be a time-homogeneous discrete time Markov chain. For a function $V \geq 1$ the drift of the process at each transition with respect to *V* is given by $E[V(X_{i+1})|X_i] - V(X_i)$ and the cumulative drift of the process is

$$
S_n(V) = \sum_{i=0}^{n-1} E[V(X_{i+1})|X_i] - V(X_i) = \sum_{i=0}^{n-1} E[V(X_{i+1})|X_i] - V(X_{i+1}) - V(X_0) + V(X_n),
$$

<http://dx.doi.org/10.1016/j.spl.2015.12.030> 0167-7152/© 2016 Elsevier B.V. All rights reserved.

 $\sum_{i=1}^{n} Y_i$. Probability

© 2016 Elsevier B.V. All rights reserved.

E-mail address: [Thomas.Boucher@tamuc.edu.](mailto:Thomas.Boucher@tamuc.edu)

where $\sum_{i=0}^{n-1} E[V(X_{i+1})|X_i] - V(X_{i+1})$ is the sum of the martingale difference sequence $\{E[V(X_{i+1})|X_i] - V(X_{i+1})\}_{i=0}^{n-1}$. The object then is to bound the probability the cumulative drift is moderate

$$
P\left(\max_{1\leq i\leq n}|S_i(V)|<\lambda\right),
$$

as a complement to the conditional probability the estimate is near the target given the moderate drift; i.e., for $\epsilon > 0$

$$
P\left(\left|\frac{1}{n}\sum_{i=0}^{n-1}f(X_i)-E[f(X_i)]\right|>n\epsilon\left|\max_{1\leq i\leq n}|S_i(V)|<\lambda\right|\right).
$$

This being said, the emphasis on Markov chain applications will be suppressed in this article in favor of speaking generally about martingale difference sequences.

2. Results

The main result depends upon the following lemmas which appear in [Li](#page--1-1) [\(2003\)](#page--1-1) and borrow from [Hall](#page--1-3) [and](#page--1-3) [Heyde](#page--1-3) [\(1980\)](#page--1-3) and [Lesigne](#page--1-0) [and](#page--1-3) [Volny](#page--1-0) [\(2001\)](#page--1-0). The lemmas use arguments based on Burkholder's inequality for *L*^p martingales (see [Hall](#page--1-3) and [Heyde,](#page--1-3) [1980\)](#page--1-3) and convexity to arrive at the results. Both lemmas establish bounds on $E|S_n|^p$, treating the cases $1 < p < 2$ and $p > 2$ separately.

Lemma 1. Let $\{X_i\}_{i=1}^n$ be a finite sequence of a martingale difference where $X_i \in L^p$ for some $p \in (1, 2]$, and let $S_n = \sum_{i=1}^n X_i$. *Then*

$$
E|S_n|^p \le b_p^p \sum_{i=1}^n E|X_i|^p,
$$

$$
E|S_n|^p \ge a_p^{-p} n^{p/2-1} \sum_{i=1}^n E|X_i|^p,
$$

where $b_p = 18pq^{1/2}$, $a_p = 18p^{1/2}q$ and q is such that $1/p + 1/q = 1$.

Slightly different results are to be expected when $p > 2$. When $p = 2$ establishing bounds on the probabilities of deviations are not difficult.

Lemma 2. Let $\{X_i\}_{i=1}^n$ be a finite sequence of a martingale difference where $X_i\in L^p$ for some $p>2$, and let $S_n=\sum_{i=1}^nX_i$. Then

$$
E|S_n|^p \le n^{p/2-1} b_p^p \sum_{i=1}^n E|X_i|^p,
$$

$$
E|S_n|^p \ge a_p^{-p} \sum_{i=1}^n E|X_i|^p,
$$

where $b_p = 18pq^{1/2}$, $a_p = 18p^{1/2}q$ and q is such that $1/p + 1/q = 1$.

The following is the main result. The previous lemmas are applied to establish bounds on the probabilities of moderate deviations in the separate cases $1 < p < 2$ and $p > 2$.

Theorem 1. Let $\{Y_i\}_{i=1}^n$ denote a finite martingale difference sequence. Let $S_n = \sum_{i=1}^n Y_i$. Suppose $E|Y_i|^p = M < \infty$, $(E|Y_i|^{p+\delta})^{1/(p+\delta)} < \infty$ for some $\delta > 0$.

,

,

(i) If
$$
1 < p < 2
$$
, then

$$
P\left(\max_{i\in\{1,\ldots,n\}}|S_i|\leq\lambda\right)\leq 1-\left(\frac{c_nE|S_n|^p-\lambda^p}{[\lambda+M]^p}\right)^{(p+\delta)/\delta}
$$

for $\lambda > 0$ *such that*

$$
2^{-1/p} (c_n E|S_n|^p)^{1/p} - M/2 \leq \lambda < (c_n E|S_n|^p)^{1/p},
$$

where c_n = $[\prod_{i=1}^{n-1}(1 + a_p/\sqrt{n - i})]^{-p}$ for $n \ge 2$, $c_1 = 1$, and $a_p = 18p^{3/2}/(p - 1)$ *.* (ii) *If p* > 2*, then*

$$
P\left(\max_{i\in\{1,\ldots,n\}}|S_i|\leq\lambda\right)\leq 1-\left(\frac{c_nE|S_n|^p-\lambda^p}{[\lambda+M]^p}\right)^{(p+\delta)/\delta}
$$

Download English Version:

<https://daneshyari.com/en/article/7549008>

Download Persian Version:

<https://daneshyari.com/article/7549008>

[Daneshyari.com](https://daneshyari.com)