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a b s t r a c t

We consider a Hamiltonian involving the range of the simple randomwalk and theWiener
sausage so that the walk tends to stretch itself. This Hamiltonian can be easily extended
to the multidimensional cases, since theWiener sausage is well-defined in any dimension.
In dimension one, we give a formula for the speed and the spread of the endpoint of the
polymer path. Also, we provide the CLT. It can be easily showed that if the self-repelling
strength is stronger, the end point is going away faster. This strict monotonicity of speed
has not been proven in the literature for the one-dimensional case.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The model and main results

A polymer consists of monomers. Monomers have tendency to repel each other because two monomers cannot occupy
the same site. This phenomenon is called the excluded-volume-effect. There is a probabilistic way to model this physical
phenomenon (cf. Madras and Slade, 1993, Section 2.2). We use the d-dimensional simple random walk {Sn}N∪0 under the
probability measure P to represent the position of monomers and Sn to represent the end-point of the polymer chain with
length n. S0 = 0 and Sn =

n
i=1 Xi, where (Xi)i∈N is a sequence of independent and identically distributed (i.i.d.) random

variables. The distribution of Xi’s is

P(X1 = x) =


1
2d
, x ∈ Zd with ∥x∥ = 1,

0, otherwise.

The random process (Sn)n∈N∪0 is called the simple random walk (SRW) on Zd. Suppose that the end-point has scale αn, the
local density of monomers will be n

αdn
. The self-repelling energy is approximately

exp (Energy) ≈ exp


−


x∈Zd


n
αd
n

2

1x is occupied


≈ exp


−αd

n ×


n
αd
n

2

. (1.1)
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On the other hand, by the local limit theorem of the simple random walk,

P(|Sn| = αn) ≈ exp(−Cα2
n/n). (1.2)

Let

n2

αd
n

=
α2
n

n
, (1.3)

we get αn = n
3

d+2 . It is expected that |Sn| ∼ n
3

d+2 for d = 1, 2, 3, and |Sn| ∼ n1/2 for d ≥ 4 with a logarithmic correction
when d = 4 under the self-repelling phenomenon.

In this paper, we propose the following Hamiltonian

Gn :=
n2

Rn
, (1.4)

where Rn is the number of sites occupied by the walk up to time n − 1, that is,
Rn := #{x : ∃i, Si = x, 0 ≤ i ≤ n − 1}. (1.5)

Fix n ∈ N and a parameter β ∈ (0,∞), denote

ZG
n := E (exp (−βGn)) (1.6)

and

ZG
n (A) := E (1A exp (−βGn)) . (1.7)

The polymer measure is then defined by

PG
n (S) :=

e−βGn(S)

ZG
n

P(S). (1.8)

β is called the strength of the self-repellence. This polymer measure favors the event ‘‘the polymer has large range’’.
Let Id(x) := limn→∞

−1
n log P{Rn ≥ xn} and I(x) := I1(x) =

1
2 (1 + x) log(1 + x)+ 1

2 (1 − x) log(1 − x). The following are
our main results for the one-dimensional discrete setting.

Theorem 1.1. (i) For β > 0,

lim
n→∞

1
n
log ZG

n = g∗(β), (1.9)

where

g∗(β) := − inf
c∈[c̃(β),1]


β

c
+ I(c)


(1.10)

and c̃(β) =
β

β+log 2 .
(ii) The infimum of (1.10) is obtained at c∗(β), where c∗(β) is the solution of

β = c2I ′(c) =
c2

2
log


1 + c
1 − c


. (1.11)

Note that c∗ is strictly monotone, β−1/3c∗(β) → 1 as β → 0 and e2β(1− c∗(β)) → 2 as β → ∞. g∗(β) can be written as

g∗(β) = −c∗(β) log
1 + c∗(β)

1 − c∗(β)
−

1
2
log(1 − c∗(β)2). (1.12)

Furthermore, β−2/3g∗(β) → −
3
2 as β → 0 and g∗(β)+ β → − log 2 as β → ∞.

Theorem 1.2 (LLN and LDP). For β > 0, define

PG,+
n (·) = PG

n (Sn/n ∈ ·|Sn > 0). (1.13)

Then (PG,+
n )n∈N satisfies a large deviation principle (LDP) on [0, 1] with rate n and with rate function Iβ(θ)

−Iβ(θ) =


−
β

θ
− I(θ)− g∗(β), c∗


β

2


≤ θ,

−
β

r̃
− I(2r̃ − θ)− g∗(β), θ < c∗


β

2


,

where r̃ = r̃β(θ) is the positive solution of β = 2r2I ′(2r − θ). Moreover, Iβ(θ) has the unique 0 at c∗(β).
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