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a b s t r a c t

In the exponential families framework, we provide amixing distributionwhich assures the
equivalence between the conditional and the random-effects likelihoods, two widely used
tools tomake inference on a parameter of interest in the case ofmanynuisance parameters.
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1. Introduction

The treatment of nuisance parameters is a central problem in statistical inference. When the number of nuisance
parameters grows with the sample size, for example in case of stratified models with stratum-dependent nuisance
parameters, some difficulties arise and the usual likelihood approaches are known to provide inconsistent results (Neyman
and Scott, 1948). Among the solutions developed in literature to face this issue, the conditional likelihood and the mixture
models are likely the most used inferential tools (Lindsay, 1980). It has been noted that these two approaches provide
very similar results in many situations (Rice, 2008), encouraging the investigation of their relationship and of the common
properties. Papers which deal with this topic are, for example, Lindsay et al. (1991), Neuhaus et al. (1994), Rice (2004, 2008).

Starting from Rice’s contributions (Rice, 2004, 2008) and focusing on the exponential family framework, here we show
that the use of a particular mixing distribution based on moment generating functions leads to the equivalence between
the random-effects (or marginal) likelihood used in the mixture models approach and the conditional likelihood. We also
show that an approximation of themixing function leads to the equivalencewith themodified profile likelihood (Barndorff-
Nielsen, 1983), a higher order asymptotics tool which may be used as an approximation of either marginal or conditional
likelihoods when the latter do not exist; for further information on the modified profile likelihood, see, e.g., Severini (2000,
Chapter 9).

After a short methodological introduction in Section 2, we show the aforementioned equivalences in Section 3. Three
examples are finally provided in Section 4.

2. Methods

Let y be a n-dimensional vector containing realizations of a random variable Y with density pY (y;ψ, λ), whereψ denotes
the parameter of interest and λ is a nuisance parameter. If a statistic s sufficient for λ exists, then pY (y;ψ, λ) can be
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rewritten as

pY (y;ψ, λ) = pY |S=s(y;ψ, s)pS(y;ψ, λ), (1)

where pY |S=s(y;ψ, s) is called the conditional density. The conditional likelihood,

LC (ψ) = py|S=s(y;ψ, s),

does not depend on the nuisance parameter and can be used to make inference on ψ .
A different approach for the treatment of the nuisance parameters is given by the mixture models. The mixture models

are generated by considering the nuisance parameter as a random observation from an unknown distribution: inference on
ψ can be then based on the likelihood

LM(ψ) =


Λ

pY (y;ψ, λ)g(λ;ψ)dλ, (2)

where g(λ;ψ) is the mixing function andΛ is the parametric space of λ. Using Eq. (1), we can rewrite LM(ψ) as

LM(ψ) = pY |S=s(y;ψ, s)

Λ

pS(s;ψ, λ)g(λ;ψ)dλ, (3)

where the conditional part, which does not depend on ψ , is taken out of the integral.
In this note we focus on the exponential families framework, in which

pY (y;ψ, λ) = exp{tψ + sλ− K(ψ, λ)}h(t, s),

with K(ψ, λ) being the cumulant generating function of Y and t, s functions of y. In this case, the marginal part of Eq. (1)
can be written as

pS(s;ψ, λ) = exp{λs − K(ψ, λ)}Ms(ψ)p0(s), (4)

where p0(s) and p0(t|s) are the marginal densities of S and the conditional density of T given S = s, respectively, when
(ψ, λ) = (0, 0). Moreover, Ms(ψ) is the conditional moment generating function of t given S = s.

To obtain the equivalence between the random-effects and the conditional likelihoods, Rice (2004, 2008) suggests forcing
the integral term of Eq. (3), namely


Λ
pS(s;ψ, λ)g(λ;ψ)dλ, to be independent of ψ . In particular, in the context of pair-

matched case-control studies investigated in those two papers, the equivalence is achieved by identifying the mixing
function h(λ;ψ)which solves the system of equations

t∈Ts

eψt

Λ

eλsh(λ;ψ)dλ = constant (5)

for any value of s, i.e., that forces all the marginal probabilities of S to be independent of ψ . Here h(λ;ψ) = g(λ;ψ)/
exp{K(ψ, λ)} and


t∈Ts e

ψt is the expression of the moment generating function Ms(ψ) in case of discrete observations,
with Ts denoting the support of p0(t|s). Note that, to reach this goal, the mixing distribution must depend on ψ , making
Rice’s strategy different from the usual mixture models approach. This dependence upon ψ is supported by the work of
Severini (2007).

3. Equivalence

Although the transformation into a moment problem as seen in Eq. (5) could seem attractive, it limits the possibility of
using this technique for the cases inwhich the sufficient statistic s is discrete andwith a finite support. Through the previous
section, it is clear that the goal is to drop out the dependence onψ from the integral term in the right-hand side of Eq. (3); but
Rice (2004, 2008) exceeded that, dropping out the dependence on s as well (the integral part of Eq. (3) becomes a constant,
see Eq. (5)). This is not necessary, since there is no problem if themixing function depends on the data (Severini, 2007). In the
following, we suggest a formulation for the mixing function that also assures the equivalence between the random-effect
and the conditional likelihoods in the case of continuous sufficient statistics.

Let us consider the integral term of LM(ψ) in the light of Eq. (4). It is
Λ

exp{λs − K(ψ, λ)}Ms(ψ)p0(s)g(λ;ψ)dλ,

where the only quantities that depend on ψ are e−K(ψ,λ) and Ms(ψ). Therefore, it is straightforward to see that this term
can be forced to be independent of ψ by choosing the mixing function

g(λ;ψ) =
eK(ψ,λ)

Ms(ψ)
pλ(λ) =

M(ψ, λ)
Ms(ψ)

pλ(λ), (6)

where M(ψ, λ) is the moment generating function of Y and pλ(λ) is any distribution independent of ψ .
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