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a b s t r a c t

In this paper we study the ratio of various order statistics based on samples from an
exponential distribution and establish a central limit theorem and the almost sure central
limit theorem for these statistics.
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1. Introduction 1

Let Xni be exponential random variables with mean λn, where i = 1, 2, . . . ,mn and n = 1, 2, 3, . . .. Heremn denotes the 2

sample size, and the model can be interpreted as sampling lifetimes of a machine and we can change the equipment on a 3

daily basis. Let the order statistics be Xn(1) ≤ Xn(2) ≤ · · · ≤ Xn(mn), and an interesting statistics is the ratios of these order 4

statistics, i.e., 5

Rnij =
Xn(j)

Xn(i)
, 1 ≤ i < j ≤ mn. 6

There are several interesting ratios Rnij that need to be examined, for example, the parameters i, j can change as previously 7

noted. The most important statistics are Rn12 and Rn23. They can measure the stability of our equipment and they show 8

whether or not our system is stable, since the exponential random variables measure the lifetimes of equipment. 9

The statistics Rn12 is the measure of the failure of the first piece of our equipment. Comparing the smallest order statistic 10

to the others tells us how stable our system is. Adler (2015) studied the strong laws of the ratio Rn12 under the cases that Q3 11

the sample sizemn is fixed or mn → ∞ as follows: for all α > −2, ifmn = m is fixed, then we have 12

lim
N→∞

1
(logN)α+2

N
n=1

(log n)αXn(2)

nXn(1)
=

m
(m − 1)(α + 2)

, a.s. 13

✩ This work is supported by IRTSTHN (14IRTSTHN023), NSFC (11471104).
∗ Corresponding author.

E-mail addresses: yumiao728@gmail.com, yumiao728@126.com (Y. Miao), ruyu27@163.com (R. Wang), adler@iit.edu (A. Adler).

http://dx.doi.org/10.1016/j.spl.2015.12.001
0167-7152/© 2015 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.spl.2015.12.001
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
mailto:yumiao728@gmail.com
mailto:yumiao728@126.com
mailto:ruyu27@163.com
mailto:adler@iit.edu
http://dx.doi.org/10.1016/j.spl.2015.12.001


2 Y. Miao et al. / Statistics and Probability Letters xx (xxxx) xxx–xxx

ifmn → ∞, then we have1

lim
N→∞

1
(logN)α+2

N
n=1

(log n)αXn(2)

nXn(1)
=

1
α + 2

, a.s.2

The properties of the statistic Rn23 are different from Rn12, for instance, the mean of Rn12 is infinite and the mean of Rn23 is3

finite.4

In the present paper, we are interested in the statistic Rn2j. For convenience sake, we first study the statistic Rn23, and for5

the statistic Rn2j, the proof is similar. In the following section, we shall establish the central limit theorem and the almost6

sure central limit theorem for the statistic Rn23.7

2. Main results8

First we give the density function of Rn23 with fixed sample size mn = m. For every n ≥ 1, let {Xni, i ≥ 1} be a sequence9

of independent exponential random variables with mean λn, and let {Xn, n ≥ 1} := {(Xni, i ≥ 1), n ≥ 1} be independent10

random sequences. The order statistics are Xn(1) ≤ Xn(2) ≤ · · · ≤ Xn(m). The joint density of the second and third order11

statistics Xn(2), Xn(3) is12

fn(x2, x3) =


m!

(m − 3)!λ2
n
e−x2/λne−x3(m−2)/λn(1 − e−x2/λn), 0 < x2 < x3

0, otherwise.
13

We transform to the variables ω = x2 and r = x3/x2. The Jacobian is ω and the joint density of ω and r is14

fn(ω, r) =


m!

(m − 3)!λ2
n
ωe−ω[1+r(m−2)]/λn(1 − e−ω/λn), ω > 0, r > 1.

0, otherwise.
15

Thus the density function of Rn23 := Xn(3)/Xn(2) is16

f (x) =
m!

(m − 3)!


1

1 + x(m − 2)

2

−


1

2 + x(m − 2)

2


, x ≥ 1.17

Adler (2015) obtained the expectation of Rn2318

E(Rn23) = 1 +
m(m − 1)
m − 2

log


m
m − 1


.19

Our first result is about the asymptotic distribution of the sums of
N

n=1 Rn23. The following lemma gives some properties20

for the slowly varying function at ∞.21

Lemma 2.1 (Csörgő et al., 2003, Lemma 1). Let ξ be a random variable with Eξ = 0, and let22

L(x) := Eξ 21{|ξ |≤x}, (2.1)23

then the following statements are equivalent:24

(a) x2P(|ξ | > x) = o(L(x));25

(b) xE|ξ |1{|ξ |>x} = o(L(x));26

(c) E|ξ |
α1{|ξ |≤x} = o(xα−2L(x)) for α > 2;27

(d) L(x) is a slowly varying function at ∞, i.e., L(cx) ∼ L(x) as x → ∞ for each c > 0.28

When L(x) is a slowly varying function at ∞, a well-known result is E|ξ |
p < ∞ for all 0 ≤ p < 2. Moreover, if29

L(x) := Eξ 21{|ξ |≤x} varies slowly at ∞, then so does the function Lm(x) := E(ξ − m)21{|ξ−m|≤x} for everym ∈ R. Let30

ηn = 1 ∨ sup{r > 0; nL(r) ≥ r2}, n ∈ N,31

then it is easy to check that32

ηn → ∞ and η2
n ∼ nL(ηn).33

Lemma 2.2 (Kallenberg, 1997, Theorem 4.17). Let ξ1, ξ2, . . . be i.i.d. nondegenerate random variables, and let ζ be N(0, 1). Then34

an


k≤n(ξk −mn) for some constants an and mn if and only if the function L(x) := Eξ 21{|ξ |≤x} varies slowly at ∞, in which case35

we may take mn = 0. (From the proof of Kallenberg (1997, Theorem 4.17), an can be taken by η−1
n ).36



Download English Version:

https://daneshyari.com/en/article/7549124

Download Persian Version:

https://daneshyari.com/article/7549124

Daneshyari.com

https://daneshyari.com/en/article/7549124
https://daneshyari.com/article/7549124
https://daneshyari.com

