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a b s t r a c t

We propose a semiparametric linear programming discriminant (SLPD) rule for high
dimensional discriminant analysis under a semiparametric model. As an extension, we
further propose a two-stage SLPD (TSLPD) rule, which can have better classification
performance under mild sparsity assumptions.
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1. Introduction 1

High dimension low sample size data sets are frequently encountered nowadays in different fields. However it is known 2

that the statistical analysis of these data sets is very challenging and possibly intractable in some instances. For example, 3

in high dimensional classification, the classical linear discriminant analysis is asymptotically equivalent to random guess 4

even when the Gaussian assumptions are satisfied (Bickel and Levina, 2004). Fortunately, in many situations the data can be 5

assumed to be sparse in that many parameters are close or equal to zero. Motivated by this observation, many approaches 6

are proposed to exploit this sparsity assumption. 7

Let X = (x1, . . . , xp)T and Y = (y1, . . . , yp)T be random variables from two different classes. We shall call these two 8

classes class X and class Y throughout this paper. Assume the Gaussian model where X ∼ N(µx, Σ) and Y ∼ N(µy, Σ). 9

Given a random observation Z from class X or class Y , the well known Bayes rule classifies Z into class X if [Z − (µx +µy)/2] 10

Σ−1(µy − µx) ≤ 0 and into class Y otherwise. 11

Practically, µx, µy and Σ are unknown and it is a standard technique to separately estimate µx, µy and Σ or Σ−1 from 12

the sample and plug them into the above Bayes rule. Assuming that both Σ and µ = µy − µx are sparse, Shao et al. (2011) 13

used thresholding procedures for estimating Σ and µ. By noticing that the Bayes rule depends on Σ and µ only through 14

β = Σ−1µ, instead of estimating Σ−1 and µ separately, Cai and Liu (2011) obtained sparse estimators for β directly. Other 15

approaches for sparse linear discriminant analysis under multivariate normal assumptions can be found in Fan et al. (2012) 16

and Mai et al. (2012) and the references therein. 17

A limitation of the linear discriminant rules is the normality assumption. When p is fixed, Lin and Jeon (2003) considered 18

the so-called transnormal or nonparanormal distribution to allow themarginal distributions unspecified, as discussed in the 19
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next subsection; see also Kon and Nikolaev (2011). In this paper, we consider discriminant analysis under this generalized1

distribution when the dimension p far exceeds the sample size n but grows slower than exp(n1/2). We derive the Bayes rule2

under this semiparametric model and propose estimators for its components. We show that the risk of our classification3

rule tends to the Bayes risk in probability.4

1.1. A semiparametric model5

We begin by introducing some notations. For any matrixM , writeMT as the transpose ofM . Let v = (v1, . . . , vp)
T

∈ Rp
6

be a p-dimensional vector. Define |v|0 =
p

i=1 I{vi≠0} and |v|∞ = max1≤i≤p |vi|. For any 1 ≤ q < ∞, the lq norm of v is7

defined as |v|q = (
q

i=1 |vi|
q)1/q. We denote the p-dimensional vector of ones as 1p and the p-dimensional vector of zeros8

as 0p.9

Following Lin and Jeon (2003), we say a random vector V = (V1, . . . , Vp)
T has a transnormal distribution TN(h, µ, 1p, Γ )10

if there exists a set of univariate strictly monotone and differentiable functions h = (h1, . . . , hp)
T such that h(V ) =11

(h1(V1), . . . , hp(Vp))
T is multivariate normal with mean µ = (µ1, . . . , µp)

T and correlation matrix Γ = (γij)p×p.12

The transnormal distribution is also called the nonparanormal distribution in some recent literature and is also related to13

theGaussian copulamodel; see for example Liu et al. (2009). Denote the density functions ofX andY as fX and gY respectively.14

In this paper we assume that X ∼ TN(h, µx, 1p, Γ ) and Y ∼ TN(h, µy, 1p, Γ ). Without loss of generality we assume that15

µx = (0, . . . , 0)T , µy = µ = (µ1, . . . , µp)
T . Therefore hi(xi) ∼ N(0, 1), hi(yi) ∼ N(µi, 1), and we immediately have16

hi = Φ−1
◦ Fi = (Φ−1

◦ Gi) + µi, 1 ≤ i ≤ p, (1)17

where ◦ denotes the composition of functions, Φ is the univariate standard Gaussian cumulative distribution function,18

Fi is the cumulative distribution function of xi and Gi is the cumulative distribution function of yi. This is a sub model19

of the functional analysis of variance model; see for example Lin and Jeon (2003) for more discussion. In addition, when20

X ∼ N(µx, Σ) and Y ∼ N(µy, Σ), model (1) is satisfied with µ = µy − µx.21

1.2. Discriminant analysis through the semiparametric model22

Suppose h, µ and Γ are known and let Z = (z1, . . . , zp)T be an independent observation from class X or class Y . Under23

the semiparametricmodel introduced in the last subsection, thewell known Bayes procedure yields a classification rule that24

classifies Z to class X if and only if DL(Z) ≤ 0 where25

DL(Z) = {h(Z) − µ/2}TΓ −1µ. (2)26

This is in fact equivalent to applying Fisher’s LDA to the transformed data h(Z), h(X) and h(Y ) and the misclassification rate27

of this rule is seen as28

R = Φ(−∆p/2), where ∆p =


µTΓ −1µ. (3)29

When p is bounded, what we introduced above is similar to Case 1 in Lin and Jeon (2003). We now discuss the estimation of30

the components inDL(Z)when p is very large. Noting that the discrimination ruleDL(Z)depends onΓ andµ only through the31

productΓ −1µ, wepropose to estimateβ := Γ −1µby theDantzig selector in Candes andTao (2007) andCai and Liu (2011) as32

β̂ = argminβ∈Rp{|β|1 subject to |Γ̂ β − µ̂|∞ ≤ λn}, (4)33

where λn is a tuning parameter, Γ̂ and µ̂ are estimators of Γ and µ defined in Section 2. On the other hand, we estimate34

h(Z) − µ/2 using h̃Z as in (7). We then classify Z to class X if h̃T
Z β̂ ≤ 0, and to class Y if h̃T

Z β̂ > 0. We shall call this the Semi-35

parametric Linear Programming Discriminant (SLPD) rule. Note from (3) that the Bayes risk is independent of h. Consistent to36

this, the SLPD rule is invariant about h; see Proposition 1.37

While we are finishing this paper, we found that the semiparametric model in this paper is also studied in Han et al.38

(2013) andMai and Zou (2013), but with key differences. Our method and assumptions are different from those in Han et al.39

(2013) and Mai and Zou (2013). Under the semiparametric model, we directly estimate the Bayes rule, while Mai and Zou40

(2013) made use of an equivalent least square formulation for estimating β and Han et al. (2013) is based on the regularized41

optimal affine discriminant analysis in Fan et al. (2012). In terms of estimation method, we use median in estimating µ and42

use Dantzig selector in estimating β . In terms of assumptions, we do not assume the irrepresentable condition (Zhao and43

Yu, 2006); see for example Definition 8 of Han et al. (2013) and (18) of Mai and Zou (2013). This condition is known to be44

sufficient for selecting the zero entries in β consistently in theory, but can be easily violated in practice (Zhao and Yu, 2006).45

What is more, our sparsity assumption on β is more general; see (12) in Theorem 1. More specifically, we do not require the46

number of nonzero elements of β to be relatively small, while Han et al. (2013) and Mai and Zou (2013) considered the case47

that the number of nonzero elements ofβ ismuch smaller than n. Last but not least, we allow the logarithm of the dimension48

to grow slower than the square root of sample size while Mai and Zou (2013) requires that the logarithm dimension grows49

slower than the cube root of n.50
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