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a b s t r a c t

We prove large deviation principles for three non-standard telegraph processes. The first
one is a damped model with velocity driven by Bernoulli trials studied in Crimaldi et al.
(2013), and we obtain the same rate function obtained in De Gregorio andMacci (2014) for
another damped telegraph process. The other telegraph processes are non-dampedmodels
and we assume suitable hypotheses: in a case the holding times have a general super-
exponential distribution, in another case the change-of-direction number process satisfies
a large deviation principle.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The stochastic processes are often used to describe random motions. The standard telegraph process describes the
motion of a particle on the real line, which moves alternatively forward and backward with finite speed. Furthermore, if
one supposes that the changes of direction are governed by a homogeneous Poisson process, there is a connection with the
theory of the differential equations because its density law satisfies a hyperbolic partial differential equation; in fact in some
references the telegraph process is called wave governed random motion. Among the references in the literature we recall
Orsingher (1990) and, since we have in mind the case with drift, Beghin et al. (2001).

Several modifications of the standard telegraph process have been studied: here we recall the damped model in
Di Crescenzo and Martinucci (2010), the inhomogeneous model in Iacus (2001), the models with random drift in Orsingher
and Ratanov (2002) and random velocities in Stadje and Zacks (2004), the models with jumps in Di Crescenzo et al. (2013)
and Ratanov (2013), and the multidimensional models in Orsingher and De Gregorio (2007) called random flights. It is
interesting to observe that applications of telegraph processes emerge in different fields. Indeed, in physics the propagation
of a damped wave along a wire is described by the telegraph equation. Several recent references deal with application in
finance and here we recall the monograph of Kolesnik and Ratanov (2013).

Large deviations give an asymptotic computation of small probabilities on exponential scale. Some large deviation results
for telegraph processes appear in Macci (2009) and De Gregorio and Macci (2012); the first reference refers to the more
general results for Markov additive processes (see e.g. Ney and Nummelin, 1987a,b,c). The aim of this paper is to present
large deviation results for the following three non-standard telegraph processes.
Model 1. A particular dampedmodel studied in Crimaldi et al. (2013). They considered a class of damped telegraph processes
with velocity driven by random trialswhich depend on a parameter A ≥ 0; here we consider the case A = 0 studied in Section
4 of that reference.

E-mail address:macci@mat.uniroma2.it.

http://dx.doi.org/10.1016/j.spl.2015.12.016
0167-7152/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2015.12.016
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2015.12.016&domain=pdf
mailto:macci@mat.uniroma2.it
http://dx.doi.org/10.1016/j.spl.2015.12.016


120 C. Macci / Statistics and Probability Letters 110 (2016) 119–127

Models 2–3. In both cases {S(t) : t ≥ 0} starts at the origin, i.e. S(0) = 0, and moves with a suitable two-valued integrated
telegraph signal;moreover V (0) is the initial velocity and {N(t) : t ≥ 0} is the change-of-direction number process. A rigorous
definition is the following:

S(t) :=

 t

0
V (s)ds (for all t ≥ 0) (1)

where, for some c1, c2 > 0, the velocity process {V (t) : t ≥ 0} is defined by

V (t) :=
c1 − c2

2
+

c1 + c2
2


1{V (0)=c1} − 1{V (0)=−c2}


(−1)N(t). (2)

Moreover we assume that V (0) and {N(t) : t ≥ 0} are independent, and P(V (0) ∈ {−c2, c1}) = 1.

• Model 2. We assume that

N(t) :=


n≥1

1{τ1+···+τn≤t} (3)

for some suitable positive super-exponential random variables {τn : n ≥ 1}; see the beginning of Section 3 for the
hypotheses on {τn : n ≥ 1}.

• Model 3. We assume that {N(t)/t : t > 0} satisfies the large deviation principle with a good rate function IN and some
hypotheses.

The large deviation principle for Model 1 (see Section 2) is governed by the rate function obtained in De Gregorio and
Macci (2014) for a slight generalization {D(t) : t ≥ 0} of the model in Di Crescenzo and Martinucci (2010); we remark that
the damping effect of the model in this paper (and in the ones in the references cited above) is due to the switching rates
that grow linearly (in fact the rates of the conditional exponential distribution functions in (4) increase linearly with n).

The proof of the large deviation principle for Model 1 is based on some asymptotic estimates for the one-dimensional
marginal distributions of the process. We consider a standard procedure already used in other papers: see e.g. Duffy and
Sapozhnikov (2008) and De Gregorio and Macci (2014). We cannot consider the same approach for Models 2–3 because in
general we do not have explicit expressions for the one-dimensional marginal distributions. However the large deviation
principles for Models 2–3 can be easily proved by considering other tools, and their proofs are shorter than the one for the
large deviation principle for Model 1. The author thinks that it is not possible to get a shorter proof of the large deviation
principle for Model 1 by adapting the proofs considered for the other models.

The large deviation principle for Model 2 (see Section 3) is given in Proposition 3.1, and it is an easy consequence of
contraction principle (see e.g. Theorem 4.2.1 in Dembo and Zeitouni (1998)) and the Example just after Corollary 5.3 in
Duffy et al. (2011). We remark that, if {τn : n ≥ 1} were exponentially distributed (as happens for the standard telegraph
process), the proof of our result does not work; however the conclusion of Proposition 3.1 is still valid.

The large deviation principle for Model 3 (see Section 4) is given in Proposition 4.1 and it is an easy consequence of
Theorem 2.3 in Chaganty (1997). Here the large deviation principle for the conditional distributions of the telegraph process
given the number of changes of directions (see Proposition 2.2 in DeGregorio andMacci (2012)) plays a crucial role. Actually,
since Theorem 2.3 in Chaganty (1997) deals with sequences (i.e. families of random variables with discrete time parameter),
we also need to show the exponential equivalence between two processes (see e.g. Definition 4.2.10 and Theorem 4.2.13 in
Dembo and Zeitouni (1998)).

We conclude with some preliminaries on large deviations (see e.g. Dembo and Zeitouni, 1998, pages 4–5). Given a
topological spaceW, we say that a family ofW-valued random variables {W (t) : t > 0} satisfies the large deviation principle
(LDP from now on) with rate function I if: the function I : W → [0, ∞] is lower semi-continuous; the upper bound

lim sup
t→∞

1
t
log P(W (t) ∈ C) ≤ − inf

w∈C
I(w)

holds for all closed sets C; the lower bound

lim inf
t→∞

1
t
log P(W (t) ∈ G) ≥ − inf

w∈G
I(w)

holds for all open sets G. Moreover a rate function is said to be good if all its level sets {{w ∈ W : I(w) ≤ η} : η ≥ 0} are
compact. In view of the proof of Proposition 4.1 we recall that these definitions can be formulated for a sequence of random
variables (i.e. {W (n) : n ≥ 1}, where n is a discrete index parameter), and for families of probability measures {µt : t > 0}
on W, where µt(·) = P(W (t) ∈ ·). In this paper the rate functions uniquely vanish at some point x0 and, roughly speaking,
if x0 does not belong to the closure of a set E (and therefore infw∈E I(w) > 0), one can say that P(W (t) ∈ E) goes to zero as
e−t·infw∈E I(w) (as t → ∞).
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