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a b s t r a c t

In this note we prove a general large deviation principle (LDP) for the longest success run
in a sequence of independent Bernoulli trails. This study not only recovers several recently
derived LDPs, but also gives new LDPs for the longest success run. The method is based
on the Bryc’s inverse Varadhan lemma, which can be intuitively generalized to the longest
success run in a two-state (success and failure) Markov chain.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let {Xk}1≤k≤n be n independent Bernoulli trails having P(Xi = 1) = p and P(Xi = 0) = 1 − p := q, with ‘1’ and ‘0’
denoting the ‘success’ and ‘failure’ respectively. We assume that 0 < p < 1 throughout the note. The longest success run
L(n), namely the longest stretch of consecutive successes, has been attracting considerable attention due to its applications
in various fields such as reliability and statistics (cf. Balakrishnan and Koutras, 2002).We refer to Erdös and Rényi (1970) and
Erdös and Révész (1975) for the first few seminal works in 1970s, and Mao et al. (2015), Holst and Konstantopoulos (2015),
Konstantopoulos et al. (in press) and Liu and Yang (in press) for the latest progress.

Although there is an explicit formula of the distribution function of L(n) in the following form (for instance cf. Holst and
Konstantopoulos, 2015),

P(L(n) < k) =
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, (1.1)

where [·] denotes the integer part of a constant, limiting behaviors of the distribution of L(n) as n → ∞ can be hardly
obtained due to the complexity of (1.1). Therefore probability estimating of L(n) for large n has been an important topic. In
this note, we fully study this aspect in terms of large deviations. We first recall a strong law of large numbers (cf. Erdös and
Rényi, 1970, Erdös and Révész, 1975 and Rényi, 1970): as n → ∞,

L(n)/ log1/p n → 1, almost surely. (1.2)
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This strong law suggests to study large deviation probabilities P(L(n)/ log1/p n ∈ A) for a set A not containing themost prob-
able point ‘1’. Such deviation probabilities have been fully investigated in Mao et al. (2015). The strong law more generally
suggests to study LDP for the family of normalized longest runs {L(n)/ log1/p n}. Indeed such a LDP has been recently estab-
lished in Konstantopoulos et al. (in press) based on the moment generating function of L(n). The employed (moment gener-
ating function) method in Konstantopoulos et al. (in press) naturally leads to a LDP for another family of normalized longest
runs {L(n)/n}, which has also been investigated therein. The corresponding strong law of large numbers is L(n)/n → 0 al-
most surely which is trivially from (1.2). These two LDPs were later generalized to Markov chains in Liu and Yang (in press).

It is clear that log1/p n is the most common speed in LDP in view of (1.2), but other speeds also give useful information.
For instance, the LDP for {L(n)/n} in Konstantopoulos et al. (in press) not only implies the (super) large deviation
probability ln P (L(n) > c · n) ∼ −n · c · ln(1/p) with 0 < c < 1, but also yields the Laplace transform asymptotics
lnE exp {n · φ(L(n)/n)} ∼ n · supx∈R[φ(x) − Λ∗(x)] with Λ∗ being the corresponding rate function and φ a continuous
function satisfying appropriate assumptions. In this note, we present a LDP with a general speed α(n) which on one hand
recovers those two LDPs obtained in Konstantopoulos et al. (in press), and on the other hand gives new forms of LDPs. What
is more important, this approach includes and unifies all possible LDPs for normalized longest runs. The main result of this
note is formulated as follows.

Theorem 1.1. Suppose that log1/p n ≤ α(n) ≤ n and the limit limn→∞ ln(n)/α(n) =: β exists. Then the family of normalized
longest success runs {L(n)/α(n)} obeys the LDP with a speed α(n) and a good rate function S(x) defined as

S(x) =


x · ln(1/p) − β, x ∈ D,
+∞, x ∉ D,

(1.3)

where the interval D is given by D = {x ∈ R : β/ ln(1/p) ≤ x ≤ lim supn→∞ n/α(n)}. That is,

(i) for any open set O ⊆ R,

lim inf
n→∞

1
α(n)

ln P (L(n)/α(n) ∈ O) ≥ − inf
x∈O

S(x); (1.4)

(ii) for any closed set F ⊆ R,

lim sup
n→∞

1
α(n)

ln P (L(n)/α(n) ∈ F) ≤ − inf
x∈F

S(x). (1.5)

Here we discuss several special cases of Theorem 1.1, and their connections with the LDPs derived in Konstantopoulos et al.
(in press).

• α(n) = log1/p n. In this case the interval D = {x : x ≥ 1}, β = ln(1/p) and S(x) = (x − 1) ln(1/p) for x ≥ 1. Such a LDP
has been proved in Konstantopoulos et al. (in press).

• α(n) = n. The interval D = {x : 0 ≤ x ≤ 1}, β = 0 and S(x) = x ln(1/p) for 0 ≤ x ≤ 1. This LDP has also been derived
in Konstantopoulos et al. (in press).

• α(n) = nα with 0 < α < 1. This is a new type of LDP and the speed is between log1/p n and n. The interval
D = {x : x ≥ 0}, β = 0 and S(x) = x ln(1/p) for x ≥ 0.

A direct consequence of Theorem 1.1 is Laplace transform asymptotics (which is also known as the Varadhan’s integral
lemma; see Dembo and Zeitouni (2009, Section 4.3)) in the following form

lnE exp {α(n) · φ(L(n)/α(n))} ∼ α(n) · sup
x∈R

[φ(x) − S(x)]

under suitable assumptions on the continuous function φ. The proof of Theorem 1.1 is given in Section 2 whose main
ingredients are the Bryc’s Inverse Varadhan Lemma and suitable estimates on the distribution function of L(n) formulated
in (2.1). This approach can be intuitively generalized to the longest success run in a two-state (success and failure) Markov
chain.

2. Proof of Theorem 1.1

The proof is built on the Bryc’s Inverse Varadhan Lemma (cf. Dembo and Zeitouni, 2009, Section 4.4) and the following
important limit.

Lemma 2.1. For every x > β/ ln(1/p), it holds that

lim
n→∞

1
α(n)

ln P (L(n)/α(n) ≥ x) = −S(x).
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