EI SEVIER

Contents lists available at ScienceDirect

Statistics and Probability Letters

Some integrals involving multivariate Hermite polynomials: Application to evaluating higher-order local powers

Yoshihide Kakizawa

Faculty of Economics, Hokkaido University, Nishi 7, Kita 9, Kita-ku, Sapporo 060-0809, Japan

ARTICLE INFO

Article history: Received 6 October 2015 Accepted 8 December 2015 Available online 29 December 2015

Keywords: Multivariate Hermite polynomial Asymptotic expansion Edgeworth expansion

ABSTRACT

We present the formula for a certain integral with respect to multivariate Hermite polynomials. Such integrals are used for deriving higher-order local power functions of asymptotically chi-squared tests. As an example, we provide asymptotic expansion for the local power function of Rao's score test.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let $\phi_{\Sigma}(\cdot)$ be the density of the *p*-variate normal distribution $N_p(\mathbf{0}_p, \mathbf{\Sigma})$;

$$\phi_{\Sigma}(\mathbf{v}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{\mathbf{v}'\mathbf{\Sigma}^{-1}\mathbf{v}}{2}\right), \quad \mathbf{v} = (v_1, \dots, v_p)',$$

where $\Sigma = [\sigma_{j,j'}]_{j,j' \in \{1,...,p\}}$ is a $p \times p$ positive definite matrix. For any $n \in \mathbb{N}$, we set

$$\phi_{\Sigma}^{j_1,\ldots,j_n}(\mathbf{v}) = (-1)^n \Big(\prod_{i=1}^n \frac{\partial}{\partial v_{j_i}} \Big) \phi_{\Sigma}(\mathbf{v}), \quad j_1,\ldots,j_n \in \{1,\ldots,p\};$$

 $\phi_{\Sigma}^{j_1,\dots,j_n}(\mathbf{v})/\phi_{\Sigma}(\mathbf{v})$ is referred to as the multivariate Hermite polynomial. For example,

$$\begin{split} \phi_{\Sigma}^{j_1}(\mathbf{v}) &= \widetilde{v}_{j_1} \phi_{\Sigma}(\mathbf{v}), \\ \phi_{\Sigma}^{j_1,j_2}(\mathbf{v}) &= (\widetilde{v}_{j_1} \widetilde{v}_{j_2} - \sigma^{j_1,j_2}) \phi_{\Sigma}(\mathbf{v}), \\ \phi_{\Sigma}^{j_1,j_2,j_3}(\mathbf{v}) &= (\widetilde{v}_{j_1} \widetilde{v}_{j_2} \widetilde{v}_{j_3} - \langle 3 \rangle \sigma^{j_1,j_2} \widetilde{v}_{j_3}) \phi_{\Sigma}(\mathbf{v}), \end{split}$$

where $\widetilde{v}_j = \sigma^{j,j'}v_{j'}$ (we used the standard summation convention instead of $\sum_{j'=1}^p \sigma^{j,j'}v_{j'}$), with $\sigma^{j,j'}$ being the (j,j')th element of Σ^{-1} . Here, the notation $\langle n \rangle$ before a term with indices is a sum of n similar terms obtained by index permutation, e.g., $\langle 3 \rangle \sigma^{j_1,j_2} \widetilde{v}_{j_3} = \sigma^{j_1,j_2} \widetilde{v}_{j_3} + \sigma^{j_1,j_3} \widetilde{v}_{j_2} + \sigma^{j_2,j_3} \widetilde{v}_{j_1}$. Note that

$$\phi_{\Sigma}^{j_{1},\dots,j_{n}}(\mathbf{v}) = \sum_{i=0}^{\lfloor n/2 \rfloor} \left\langle {n \choose 2i} \right\rangle_{j_{1}\dots j_{2i}|j_{2i+1}\dots j_{n}} \left[(-1)^{i} \left\langle \frac{(2i)!}{2^{i}!!} \right\rangle \sigma^{j_{1},j_{2}} \dots \sigma^{j_{2i-1},j_{2i}} \right] \widetilde{v}_{j_{2i+1}} \dots \widetilde{v}_{j_{n}} \phi_{\Sigma}(\mathbf{v})$$

(e.g., Barndorff-Nielsen and Cox, 1989, page 151, with somewhat different notation).

Given $\tau = (\tau_1, \dots, \tau_p)'$, it is well known (e.g., Anderson, 2003, page 82) that if $\mathbf{Z} \sim N_p(\tau, \Sigma)$, then, $\mathbf{Z}'\Sigma^{-1}\mathbf{Z}$ has a noncentral χ^2 -distribution with p degrees of freedom and noncentral parameter $\tau'\Sigma^{-1}\tau$;

$$\Pr[\mathbf{Z}'\mathbf{\Sigma}^{-1}\mathbf{Z} \le x] = \int_0^x g_p(t; \boldsymbol{\tau}'\mathbf{\Sigma}^{-1}\boldsymbol{\tau}) dt \quad \text{for } x > 0,$$
(1)

where

$$g_{\nu}(t;\omega^{2}) = \sum_{\ell=0}^{\infty} \frac{(\omega^{2}/2)^{\ell} \exp(-\omega^{2}/2)}{\ell!} \frac{t^{(\nu+2\ell)/2-1} \exp(-t/2)}{2^{(\nu+2\ell)/2} \Gamma((\nu+2\ell)/2)}$$

is the density of a noncentral χ^2 -distribution with ν degrees of freedom and noncentral parameter ω^2 . As usual, we write $G_{\nu}(x;\omega^2)=\int_0^x g_{\nu}(t;\omega^2)\,dt$ and $G_{\nu}^-(x;\omega^2)=1-G_{\nu}(x;\omega^2)$.

We are concerned with the integral of $\phi_{\Sigma}^{j_1,\dots,j_q}(\mathbf{v})$ over the convex set $\{\mathbf{v}\in\mathbf{R}^p:(\mathbf{v}+\tau)'\mathbf{\Sigma}^{-1}(\mathbf{v}+\tau)\leq x\}$;

$$\int_{(\mathbf{v}+\tau)'\Sigma^{-1}(\mathbf{v}+\tau)\leq x} \phi_{\Sigma}^{j_1,\dots,j_q}(\mathbf{v}) \, d\mathbf{v} = -\int_{\mathcal{D}_{\tau}(x)} \phi_{\Sigma}^{j_1,\dots,j_q}(\mathbf{v}) \, d\mathbf{v} \quad \text{for } q \in \mathbf{N},$$
 (2)

where $\mathcal{D}_{\tau}(x) = \{\mathbf{v} \in \mathbf{R}^p : (\mathbf{v} + \mathbf{\tau})' \mathbf{\Sigma}^{-1} (\mathbf{v} + \mathbf{\tau}) > x\}$ (we used $\int_{\mathbf{R}^p} \phi_{\Sigma}^{j_1, \dots, j_q}(\mathbf{v}) \, d\mathbf{v} = 0$; the orthogonality of the multivariate Hermite polynomial). Such integrals (2) for q = 1, 2, 3, 4, 5, 6 are implicitly used in the derivation of asymptotic expansions for the distributions of asymptotically chi-squared test statistics (e.g., Mukerjee, 1990a,b, Fujikoshi, 1997, Bravo, 2003, 2004, and Kakizawa, 2010a,b, 2012a,b, 2013). More precisely, we suppose that a random vector $\mathbf{U}^{(N)} = (U_1^{(N)}, \dots, U_p^{(N)})' \stackrel{d}{\longrightarrow} N_p(\tau, \mathbf{\Sigma})$ possesses cumulants

$$\begin{aligned} \text{cum}(U_j^{(N)}) &= \tau_j + \sum_{\ell \geq 1} N^{-\ell/2} c_j^{\langle \ell \rangle}, \\ \text{cum}(U_{j_1}^{(N)}, U_{j_2}^{(N)}) &= \sigma_{j_1, j_2} + \sum_{\ell \geq 1} N^{-\ell/2} c_{j_1 j_2}^{\langle \ell \rangle}, \\ \text{cum}(U_{j_1}^{(N)}, \dots, U_{j_s}^{(N)}) &= \sum_{\ell \geq s-2} N^{-\ell/2} c_{j_1 \cdots j_s}^{\langle \ell \rangle}, \quad s \in \{3, 4, \dots\}, \end{aligned}$$

where $c_\#^{\langle\ell\rangle}$'s are the coefficients of $N^{-\ell/2}$ in the cumulants. We write $e_\ell(\mathbf{z}) = \sum_{r=1}^{\ell+2} \frac{1}{r!} c_{j_1\cdots j_r}^{\langle\ell\rangle} z_{j_1} \dots z_{j_r}$ for $\mathbf{z} = (z_1,\dots,z_p)' \in \mathbf{C}^p$, and prepare the ordinary partial Bell polynomial $B_{\ell,k}^\circ = B_{\ell,k}^\circ(x_1,x_2,\dots)$ for positive integers ℓ and k ($\ell \geq k$), defined as the formal series expansion $(\sum_{\ell\geq 1} x_\ell y^\ell)^k = \sum_{\ell\geq k} B_{\ell,k}^\circ y^\ell$, i.e., $B_{\ell,k}^\circ = \sum_{i_1,i_2,\dots} x_1^{i_1} x_2^{i_2} \dots$ (see Comtet, 1974, page 136), where the summation takes over all nonnegative integers i_1,i_2,\dots , such that $i_1+i_2+i_3+\dots=k$ and $i_1+2i_2+3i_3+\dots=\ell$ (e.g., $B_{1,1}^\circ = x_1, B_{2,1}^\circ = x_2, B_{2,2}^\circ = x_1^2$). Then, as in Taniguchi (1991, page 14) (see also Withers and Nadarajah, 2010), the characteristic function of $\mathbf{U}^{(N)}$ is formally expanded as

$$\begin{split} &\exp\Big\{\tau_{j}(\mathbf{i}t_{j}) + \frac{1}{2!}\,\sigma_{j_{1}j_{2}}(\mathbf{i}t_{j_{1}})(\mathbf{i}t_{j_{2}}) + \sum_{s\geq1}\frac{1}{s!}\sum_{\ell\geq\max(1,s-2)}N^{-\ell/2}c_{j_{1}\cdots j_{s}}^{(\ell)}(\mathbf{i}t_{j_{1}})\dots(\mathbf{i}t_{j_{s}})\Big\} \\ &= \exp\Big\{\mathbf{i}t_{j}\tau_{j} - \frac{1}{2}\,\sigma_{j_{1}j_{2}}t_{j_{1}}t_{j_{2}} + \sum_{\ell\geq1}N^{-\ell/2}e_{\ell}(\mathbf{i}\mathbf{t})\Big\} \\ &= \exp\Big(\mathbf{i}t_{j}\tau_{j} - \frac{1}{2}\,\sigma_{j_{1}j_{2}}t_{j_{1}}t_{j_{2}}\Big)\Big[1 + \sum_{k\geq1}\frac{1}{k!}\sum_{\ell\geq k}N^{-\ell/2}B_{\ell,k}^{\circ}(e_{1}(\mathbf{i}\mathbf{t}), e_{2}(\mathbf{i}\mathbf{t}), \dots)\Big] \\ &= \exp\Big(\mathbf{i}t_{j}\tau_{j} - \frac{1}{2}\,\sigma_{j_{1}j_{2}}t_{j_{1}}t_{j_{2}}\Big)\Big[1 + \sum_{\ell\geq1}N^{-\ell/2}\sum_{k=1}^{\ell}\frac{1}{k!}\,B_{\ell,k}^{\circ}(e_{1}(\mathbf{i}\mathbf{t}), e_{2}(\mathbf{i}\mathbf{t}), \dots)\Big] \\ &= \exp\Big(\mathbf{i}t_{j}\tau_{j} - \frac{1}{2}\,\sigma_{j_{1}j_{2}}t_{j_{1}}t_{j_{2}}\Big)\Big[1 + \sum_{\ell\geq1}N^{-\ell/2}C_{\ell}^{\circ}(\mathbf{i}\mathbf{t})\Big] \quad (\mathbf{i} = \sqrt{-1} \text{ and } \mathbf{t} = (t_{1}, \dots, t_{p})' \in \mathbf{R}^{p}), \end{split}$$

where $C_{\ell}^{\circ}(\mathbf{z}) = \sum_{k=1}^{\ell} \frac{1}{k!} B_{\ell,k}^{\circ}(e_1(\mathbf{z}), e_2(\mathbf{z}), \ldots)$ is a polynomial of degree 3ℓ (with $C_{\ell}^{\circ}(\mathbf{0}_p) = 0$); note that $C_1^{\circ}(\mathbf{z}) = e_1(\mathbf{z})$ and $C_2^{\circ}(\mathbf{z}) = e_2(\mathbf{z}) + e_1^2(\mathbf{z})/2$. It follows that the distribution of $\mathbf{U}^{(N)}$ over a certain Borel set $A \subset \mathbf{R}^p$ may be approximated as

$$\Pr[\mathbf{U}^{(N)} \in A] = \int_{A} \left[1 + \sum_{\ell=1}^{r-2} N^{-\ell/2} C_{\ell}^{\circ} \left(-\frac{\partial}{\partial v_{j_1}}, \dots, -\frac{\partial}{\partial v_{j_p}} \right) \right] \phi_{\Sigma}(\mathbf{v} - \boldsymbol{\tau}) \, d\mathbf{v} + o(N^{-(r-2)/2}).$$

Especially, the choice $A = \{ \mathbf{v} \in \mathbf{R}^p : \mathbf{v}' \mathbf{\Sigma}^{-1} \mathbf{v} \le x \}$ yields

$$\Pr[(\mathbf{U}^{(N)})'\mathbf{\Sigma}^{-1}\mathbf{U}^{(N)} \leq x] = G_p(x; \boldsymbol{\tau}'\mathbf{\Sigma}^{-1}\boldsymbol{\tau}) - \sum_{\ell=1}^{r-2} N^{-\ell/2} \int_{\mathcal{D}_{\boldsymbol{\tau}}(x)} C_{\ell}^{\circ} \left(-\frac{\partial}{\partial v_{j_1}}, \dots, -\frac{\partial}{\partial v_{j_p}}\right) \phi_{\boldsymbol{\Sigma}}(\mathbf{v}) \, d\mathbf{v} + o(N^{-(r-2)/2}). \tag{3}$$

Download English Version:

https://daneshyari.com/en/article/7549179

Download Persian Version:

https://daneshyari.com/article/7549179

Daneshyari.com