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a b s t r a c t

Consider one realization of a continuous-time Gaussian process Z which belongs to the
Matérn family with known regularity index ν > 0. For estimating the autocorrelation-
range and the variance of Z from n observations on a fine grid, we propose two simple
estimating functions based on the ‘‘candidate Gibbs energy’’ (GE) and the empirical
variance (EV). Here a candidate GE designates the quadratic form zTR−1z/n where z is the
vector of observations and R is the autocorrelationmatrix for z associated with a candidate
range. We show that the ratio of the large-n mean squared error of the resulting GE–EV
estimate of the range-parameter to the one of its maximum likelihood estimate, and the
analog ratio for the variance-parameter, both converge, when the grid-step tends to 0,
toward a constant, only function of ν, surprisingly close to 1 provided ν is not too large. This
latter condition on ν has not to be imposed to obtain the convergence to 1 of the analog
ratio for themicroergodic-parameter. Possible extensions of this approach, which could be
rather easily implemented, are briefly discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider time-series of length n obtained by observing, at n equispaced times, a continuous-time process Z which is
Gaussian, has mean zero and an autocorrelation function which belongs to the Matérn family with regularity index ν > 0.
This family is commonly used, for instance in geostatistics or for turbulence models; see e.g. Stein (1999), Guttorp and
Gneiting (2006), Gaetan and Guyon (2010). Recall that ν = 1/2 corresponds to the well known exponential autocorrelation
(in other words, Z is a stationary Ornstein–Uhlenbeck (OU) process). The definition of Matérn processes on R can be
easily formulated in terms of the Fourier transform of their autocorrelation function, namely their spectral density over
(−∞,+∞):
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In this paper the constant Cν (where Γ (·) is the classical gamma function, see e.g. Weisstein, 1999) is chosen so that
∞

−∞
g∗

ν,θ (ω)dω = 1. Thus b is the variance of Z(t) and θ is the so-called ‘‘inverse-range parameter’’ (in fact, it is ν1/2/θ
which can be interpreted as an effective range or ‘‘correlation length’’ independently of ν, cf. Stein, 1999, Section 2.10); we
will often drop the term ‘‘inverse’’.
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We are mainly concerned here with dense grid for the observation ‘‘locations’’ (or ‘‘times’’) in the sense that the
distance δ > 0 between two successive locations is small relatively to 1/θ . The considered processes being mean square
continuous, this means that two successive observations are strongly correlated. Stein (1999, Chapter 3) shows that a
standard (i.e. fixed δ > 0) large-n asymptotic analysis followed by a less standard small-δ analysis yields useful insights
and good approximations for various real (finite-size) problems. We shall also use such an increasing domain framework
with an ‘‘infill component’’.

In this article, we assume that ν is known (see Wu et al., 2013, for a recent work on the estimation of ν) and we consider
the problem of estimating the variance and the range parameters (denoted respectively by b0 > 0 and θ0 > 0) from a
perfect sampling of Z . Notice that the case of measurement errors, called ‘‘nugget effect’’ in geostatistics, is developed in a
companion paper (Girard, 2015c). More precisely, given a known δ > 0, one observes

z := (Z(δ), Z(2δ), . . . , Z(nδ))T ∼ N(0, b0Rθ0), (1.2)

where Rθ is the Toeplitz matrix of coefficients [Rθ ]j,k = Kν,θ (δ|j − k|), j, k = 1, . . . , n, with Kν,θ (t) =


∞

−∞
g∗

ν,θ (ω)e
iωtdω.

Expressions for these autocorrelation functions Kν,θ (·) are now classical in terms of exponential or Bessel functions,
depending on ν, see e.g. Stein (1999, Section 2.5).

As is well known, implementing themaximum likelihood (ML)method is simplified after noticing that, if one constraints
θ to a fixed,>0, value, then the maximizer b is simply (e.g. Zhang, 2004):

b̂ML(θ) = (1/n)zTRθ−1z. (1.3)

Thus, substituting to b this expression in the likelihood, one only has to maximize a one-parameter criterion (the so-called
concentrated likelihood) of θ . Furthermore failures of the classical two-parameters Fisher-scoring algorithm may occur
when one does not use this profiling of the likelihood, especially in our Matérn context (Zhang, 2004). However even the
numerical one-dimensional maximization of this concentrated likelihood may often require a global grid search and thus
requires computing a (sometimes very) large number of n × n matrix determinants in addition to solving the associated
n × n linear systems. Numerical aspects will not be further discussed here.

Zhang and Zimmerman (2007) proposed to use the classical weighted least squaremethod (not statistically fully efficient
but whose implementation is often much easier than maximum likelihood since it does not require computing n × n
determinant-terms) to estimate the range parameter θ , next, to chose b̂ML(θ) as estimate for b0 (thus only one linear n × n
system has to be solved). The idea underlying this method is that, in the infill asymptotic framework (i.e. δ = 1/n and n
large), even if θ is fixed at a wrong value θ1, the product b̂ML(θ1)θ

2ν
1 still remains an efficient estimator of c0 := b0θ2ν0 , which

is called the ‘‘microergodic parameter’’ of the Matérn model (1.1) (see Du et al., 2009; Wang and Loh, 2011; Kaufman and
Shaby, 2013).

Themethodwe studyhere (proposed in the first arXiv version ofGirard, 2015c), firstly reverses the above roles of variance
and range, in that it is based on a very simple nonparametric estimate for the variance, namely the empirical variance:

b̂EV := n−1zT z. (1.4)

Secondly the maximization of the likelihood (w.r.t. θ ) is replaced by the estimating equation method:

solve in θ the equation n−1zTRθ−1z = b, (1.5)

with b fixed at b̂EV. The quantity (1/n)zTRθ−1z for a candidate θ may be called ‘‘Generalized global energy after candidate
de-correlation’’ (or candidate ‘‘Gibbs energy’’, GE, in short) of the discretely sampled process. So our proposal is called the
GE–EV estimation method and we denote by θ̂GEV this range parameter estimate.

Let us give two heuristic justifications. First, since it is quite plausible that the idea underlying Zhang and Zimmerman
(2007)’s proposal remains true for a random θ1 (Kaufman and Shaby, 2013 make this argument rigorous), then, instead of
‘‘fixing’’ θ at θ1, one may as well adjust θ so that b̂ML(θ) coincides with a given value b1 for the variance (i.e. solve (1.5) with
b fixed at b1); and, denoting θ̂1 the so-obtained θ , the product b̂ML(θ)θ

2ν
= b1θ̂2ν1 will plausibly be an efficient estimator of

b0θ2ν0 . Second, for the case ν = 1/2 and b0θ0 = c0 known, it has been shown (see Kessler, 1997) that c0/(n−1 Z(δj)2) is
a successful estimator of θ0, and thus n−1 Z(δj)2 is a successful estimator of b0. The second point is an admittedly weak
justification for selecting b̂EV, beyond the case ν = 1/2. The theoretical results we give in this article, will provide in our
context a quite strong, and rather unexpected, justification of this GE–EV approach for ν not too large (which is very often
the case in applications, see e.g. Stein, 1999; Gaetan and Guyon, 2010).

Our objective in this article is to provide first insights into the capability of the GE–EV method with the hope that the
theoretical justification obtained here can be extended to more computationally complex settings. Indeed, this approach is
not limited to observations on a one dimensional lattice, and is potentially not limited to regular grids (a weighted version,
with Riemann-sum type coefficients, of the empirical variance should then be used instead). Successful experiments with
GE–EV (and its extension CGEM–EV to the case with measurement errors, see Section 5) and its Riemann-sum version, for
various simulated two-dimensional Matérn random fields, are described in Girard (2010). See also the two Mathematica
Demos which allow one, via the Internet, to easily assess GE–EV for the case ν = 3/2 (Girard, 2015a) and the case ν = 1
(Girard, 2015b).
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