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a b s t r a c t

We prove asymptotic results and concentration inequalities for a large class of discrete
associated kernel estimators, under the total variation distance. We also propose a data
driven bandwidth selection procedure aiming to minimize the total variation. Simulations
are conducted.
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1. Introduction and overview 1

Let (T, B, c) be a measured space, where T is countable, B is the σ -algebra of all subsets of T, and c is the counting Q3 2

measure on T. Given an independent identically distributed [i.i.d.] sample (X1, . . . , Xn) taking values in T, we are interested 3

in estimating the probability mass function [p.m.f.] f : x → P(X = x) where X stands for a generic random variable having 4

the common distribution of the Xi. The natural estimator of f is the empirical p.m.f., namely 5

fn : x → Pn({x}) =
1
n

n
i=1

I{x}(Xi), (1.1) 6

where IA denotes the indicator function of any given set A ⊂ T. Recently, Kokonendji et al. (2007) (see also Kokonendji 7

and Senga Kiessé, 2011) introduced the discrete associated kernel density estimator, extending their definition to the 8

possible use of a multivariate bandwidth parameter: let p ≥ 1 be an integer, let D ⊂ Rp be a set containing 0, and let 9

K :=

Kx,h(·), x ∈ T, h ∈ D


be a collection of p.m.f. on T. For a bandwidth parameter h ∈ D , define: 10

gn,h(x) := fn,h(x)


T
fn,h(u)dc(u)

−1
, (1.2) 11

where 12

fn,h(x) :=
1
n

n
i=1

Kx,h(Xi), x ∈ T. (1.3) 13
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Fig. 1. On the left and center: Two discrete smoothings using empirical (or naive) and binomial kernel estimators of simulated data (n = 50) from
f = 0.4P (0.5) + 0.6P (10) in grey. On the right: MISE curves for Dirac and binomial kernels with f = 0.3P (0.6) + 0.7P (9).

1.1. On the normalizing constant1

Due to the general nature of K , the normalization by2

Cn,h :=


T
fn,h(x)dc(x) =

1
n

n
i=1

Yi,h, with Yi,h :=


T
Kx,h(Xi)dc(x), (1.4)3

may be necessary in the sense that Cn,h is not necessarily a.s. equal to 1. However, simulation studies show that Cn,h only4

slightly oscillates around 1 for many discrete associated kernels (see e.g. Kokonendji and Senga Kiessé (2011)). Such a5

phenomenon is also observed for continuous associated kernels, as gamma and beta kernels of Chen (1999a,b) (see also6

Igarashi and Kakizawa, 2015; Malec and Schienle, 2014; Markovich, 2015). The first contribution of this paper is to provide7

a theoretical explanation of the observed smallness of those oscillations (see Theorem 2.1).8

1.2. About asymptotic properties of gn,h9

In Abdous and Kokonendji (2009), when T ⊂ Z and D := [0, 1], a first study on the asymptotic properties, as n → ∞10

and h → 0, of the non normalized version fn,h in (1.3) shows that their pointwise consistency holds as soon as each discrete11

associated kernel Kx,h converges, when h → 0, toward the Dirac distribution δx in the following sense:12

∀k ∈ {1, 2}, ∀x ∈ T, lim
h→0


ykKx,h(y)dc(y) = xk, and lim

h→0
E


Kx,h(X)
3

< ∞. (1.5)13

Besides that pointwise strong consistency, the authors also established the asymptotic normality of fn,h(x) for fixed x, with14

asymptotic variance f (x)(1−f (x)); see Abdous andKokonendji (2009, Theorems 2.4 and 2.5). Themainmessage of those first15

results is that, on the asymptotic point of view, the pointwise performances of those associated kernels are comparable to16

that of the empirical p.m.f. fn. The second contribution of the present paper is to complete the picture by providing asymptotic17

results and concentration inequalities for the total variation distance between gn,h and f , namely the random variable18

TV (gn,h, f ) := sup
A⊂T

 
A
gn,hdc −


A
fdc
 =

1
2
∥gn,h − f ∥1,19

where, for two c-integrable functions f1 and f2, we write20

∥f1 − f2∥1 :=


T
|f1 − f2|dc.21

Those results are stated in Section 2.1 and show that the asymptotic performances of gn,h are comparable to those of fn in22

regard with the total variation.23

1.3. On the small sample outperforming of gn,h24

The unavoidable question pointed by Section 1.2 is then ‘‘why use discrete associated kernel estimators instead of fn?’’ A25

partial answer comes from simulations studies showing that gn,h seems to approximate f better than fn does. The following26

figures (Fig. 1), drawn from Kokonendji and Senga Kiessé (2011), compare the barplots of the ‘‘naive’’ estimator fn and of gn,h27

with a binomial kernel as well as their mean integrated square errors (MISE).28
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