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a b s t r a c t

Based on consistency and asymptotic normality of a nonparametric kernel trend estimation
in the context of locally stationary processes, validity of a hybrid wild bootstrap approach
for estimating the distribution of the nonparametric estimator is established. Simulations
are presented.
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1. Introduction

In time series, analysis, second order stationarity is a major assumption which allows for the development of a powerful
asymptotic theory of statistical inference; see for instance (Brockwell, 1991). However, for many time series, their second
order characteristic may change over time. Therefore, for a proper asymptotic analysis of statistics based on nonstationary
time series, the ‘standard’ tools of statistical inferencedevelopedunder stationaritymay fail. To develop a capable asymptotic
statistical theory that takes into account nonstationarity, one approach is offered by the class of locally stationary processes,
c.f. Dahlhaus (2012). Locally stationary processes are stochastic processes which have a time varying dependence structure
that fulfills only locally certain second order stationarity constraints. Assuming a linear representation for such processes
driven by i.i.d. innovations, a time varying behavior is achieved by allowing the coefficients of this representation to be time
dependent. For a detailed overview and some deep examples see Dahlhaus (2012).

For time series stemming from locally stationary processes, many statistical inference procedures developed for station-
ary processes can be successfully adapted. This includes among others, parameter estimators, nonparametric regression or
curve estimators, see Vogt (2012) and von Sachs and MacGibbon (2000). Also, methods to bootstrap such time series have
been developed in the literature. For instance a block based bootstrap approach has been considered by Paparoditis and
Politis (2002), a frequency domain approach by Sergides and Paparoditis (2008), while a hybrid wild bootstrap approach by
Kreiss and Paparoditis (2015). The later approach is the one that will be used in this paper. In particular, we consider the
problem of estimating the trend function of a time series stemming from a locally stationary process. For this we derive the
asymptotic properties of a nonparametric kernel estimation of the trend function. We then apply the hybrid wild bootstrap
procedure introduced by Kreiss and Paparoditis (2015) to infer properties of this estimator and we establish its asymptotic
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validity. Several simulations illustrate the finite sample performance of the bootstrap procedure and a real data example is
discussed.

The paper is organized as follows. In Section 2 themain assumptions imposed on the locally stationary process considered
are stated and the basic quantities used are defined. Section 3 deals with asymptotic properties of the nonparametric
kernel estimator of the trend function. In Section 4 the hybrid wild bootstrap approach is used to infer properties of the
nonparametric kernel estimator and the asymptotic validity of this procedure is established. Section 5 investigates the finite
sample performance of the bootstrap approach proposed.

2. Locally stationary processes with trend

We assume that we observe a time series Y1,n, Y2,n, . . . , Yn,n,

Yt,n = µ(t/n)+ Xt,n, t = 1, 2, . . . , n, (1)
where
(a) µ : (0, 1] → R is a trend function with µ(·) ∈ H(β, L), β ≥ 1 and H(β, L) are the functions within the Hölder-class

with parameters l = ⌊β⌋, β > 0, L > 0, i.e., the l-th derivative of µ satisfies:µ(l)(x)− µ(l)(y)
 ≤ L|x − y|β−l, ∀y, x ∈ (0, 1].

For more details on the Hölder-class see (Tsybakov, 2009). Furthermore,
(b) {Xt,n, t = 1, 2, . . . , n; n ∈ N} is a locally stationary process satisfying the following assumptions.

Xt,n has the linear representation

Xt,n =

∞
j=−∞

ψt,n(j)εt−j, t = 1, . . . , n (2)

with
(i) {εt : t ∈ Z} are independent, identically distributed (i.i.d.) random variables with E(εt) = 0, E(ε2t ) = 1 and Eε4t < ∞.

Let κ4 = E(ε4t )− 3.
(ii) supt=1,...,n |ψt,n(j)| ≤ Kl−2(j)∀ j ∈ Z, with K a nonnegative constant independent from n and the positive sequence

{l(j) : j ∈ Z} satisfying


∞

j=−∞
|j|l−1(j) < ∞.

(iii) There exists a function ψ(·, j) : (0, 1] → Rwith

sup
u∈[0,1]

|ψ(u, j)| ≤
K
l(j)

and sup
u∈[0,1]

dψ(u, j)du

 ≤
K
l(j)
, (3)

such that

sup
1≤t≤n

|ψt,n(j)− ψ(t/n, j)| ≤
K
l(j)

(4)

where {l(j) : j ∈ Z} and K are defined as above.

The above definition allows for a general class of time varying stochastic processes that includes many interesting
processes as special cases, like for instance, time varying autoregressive processes; see Dahlhaus (2012) for details. Let
Ψt,n(λ) :=


∞

j=−∞
ψt,n(j) exp(−iλt) and define the time varying spectral density as f (u, λ) := (2π)−1

|Ψ (u, λ)|2 where
Ψ (t/n, λ) :=


∞

j=−∞
ψ(t/n, j) exp(−iλt). It can be shown that under the assumptions made, supt,λ |(2π)−1Ψt,n(λ)Ψt,n(λ)

−f (t/n, λ)| = O(n−1); see Dahlhaus (1996b, 2012). Define further the time varying autocovariance at time point u and lag k as

c(u, k) :=

 π

−π

f (u, λ)e−ikλdλ =

∞
j=−∞

ψ (u, j) ψ (u, k + j) . (5)

The function c(t/n, k) provides a sufficient approximation of the autocovariance at lag k of Xt,n, that is, it holds that
Cov(Xt,n, Xt+k,n) = c(t/n, k) + O(n−1). Furthermore, and because of (ii) the time varying autocovariance fulfills


∞

k=−∞

|c(u, k)k| < ∞, ∀u ∈ (0, 1).

3. Nonparametric trend estimation

We consider the case where a nonparametric kernel based approach is used to estimate the trend function µ(·) of the
process {Yt,n}. To elaborate, let K(·) be a kernel of order l = ⌊β⌋ having support [−1, 1]. Furthermore, let K be at least one
time continuous differentiable and assume that the following conditions are satisfied: supu |K(u)| < ∞, supu |K 2(u)| < ∞

and supu |d/du K(u)| < ∞. The nonparametric kernel trend estimator at time point u ∈ (0, 1) is then defined as

µ̂(u) =
1
nh

n
t=1

K

t/n − u

h


Yt,n. (6)
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