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a b s t r a c t

We discuss joint temporal and contemporaneous aggregation of N copies of stationary
random-coefficient AR(1) processes with common i.i.d. standardized innovations, when
N and time scale n increase at different rate. Assuming that the random coefficient a has
a density, regularly varying at a = 1 with exponent −1/2 < β < 0, different joint limits
of normalized aggregated partial sums are shown to exist when N1/(1+β)/n tends to (i) ∞,
(ii) 0, (iii) 0 < µ < ∞. The paper extends the results in Pilipauskaitė and Surgailis (2014)
from the case of idiosyncratic innovations to the case of common innovations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let Xi := {Xi(t), t ∈ Z}, i = 1, . . . ,N , be stationary random-coefficient AR(1) processes

Xi(t) = aiXi(t − 1)+ ε(t), t ∈ Z, (1.1)

with common standardized i.i.d. innovations {ε(t), t ∈ Z} and i.i.d. random coefficients ai ∈ (−1, 1), i = 1, . . . ,N ,
independent of {ε(t), t ∈ Z}. Consider the double sum

SN,n(τ ) :=

N
i=1

[nτ ]
t=1

Xi(t), τ ≥ 0, (1.2)

representing joint temporal and contemporaneous aggregate of N individual AR(1) evolutions (1.1) at time scale n. We
discuss the limit distribution of appropriately normalized double sums SN,n in (1.2) asN ,n jointly increase to infinity, possibly
at a different rate. Throughout this paper, we suppose that the distribution of generic coefficient a ∈ (−1, 1) in (1.1), or the
mixing distribution, satisfies the following two assumptions.
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Assumption A1. There exist β > −1 and ϵ ∈ (0, 1) such that P(a ≤ x) is differentiable on (1 − ϵ, 1)with derivative

dP(a ≤ x)/dx = (1 − x)βψ(x), x ∈ (1 − ϵ, 1), (1.3)

where ψ is bounded on (1 − ϵ, 1) and continuous at x = 1 with ψ1 := limx→1 ψ(x) > 0.

Assumption A2. E(1 + a)−1/2 < ∞.

Assumptions A1 and A2 refer to the behavior of the mixing distribution in the vicinity of a = 1 and a = −1, respectively
(the positive and negative unit roots of generic AR(1) process X = Xi in (1.1)). Because of oscillation of the moving-average
coefficients of X when a < 0, the behavior of the mixing distribution near a = −1 is generally less important for partial
sums processes than its behavior near a = 1, the crucial role being played by the parameter β in (1.3). Assumption A1 is
similar to Zaffaroni (2004), Puplinskaitė and Surgailis (2010), Pilipauskaitė and Surgailis (2014) and other papers, although
the ‘typical’ range of β is different in the aggregation schemes with common and idiosyncratic innovations. The random-
coefficient AR(1) process X has finite variance if and only if EX2(t) = E


s≤t a

2(t−s)
= E(1 − a2)−1 < ∞, which implies

β > 0 in (1.3). It is well-known that under the condition (1.3) with 0 < β < 1 (and a ∈ [0, 1) a.s.), X has long
memory in the sense that its covariance decays as cov(X(0), X(t)) = O(t−β), t → ∞, so that


∞

t=0 |cov(X(0), X(t))| =

∞. Zaffaroni (2004) and Puplinskaitė and Surgailis (2009) discussed the existence and long memory properties of the limit
(in probability) X(t) := limN→∞ N−1N

i=1 Xi(t), t ∈ Z, of aggregated AR(1) processes Xi in (1.1), written as a moving-
average X(t) =


∞

j=0 g(j)ε(t − j) with (deterministic) coefficients g(j) := E[aj], j ≥ 0. For −1/2 < β < 0 in (1.3) and
under similar condition on the mixing distribution near a = −1, the coefficients g(j) ∼ Γ (1 + β)j−β−1, j → ∞ and
the (normalized) partial sum process of {X(t)} tends to a fractional Brownian motion with parameter H = (1/2) − β ∈

(1/2, 1), see Puplinskaitė and Surgailis (2009, Prop. 2 and 4). We recall that Granger and (1980) proposed the scheme of
contemporaneous aggregation of heterogeneous random-coefficient AR(1) processes as a possible explanation of the long
memory phenomenon inmacroeconomic time series. Subsequently, large-scale contemporaneous aggregation of linear and
heteroscedastic heterogeneous time series models was studied in Gonçalves and Gouriéroux (1988), Oppenheim and Viano
(2004), Zaffaroni (2004), Zaffaroni (2007), Celov et al. (2007), Puplinskaitė and Surgailis (2009, 2010), Pilipauskaitė and
Surgailis (2014) Giraitis et al. (2010) and other papers.

Let us describe the main results of present paper. Assume that the mixing density satisfies Assumptions A1 and A2 with
−1/2 < β < 0 and N, n increase simultaneously so as

N1/(1+β)

n
→ µ ∈ [0,∞], (1.4)

leading to the three cases (i)–(iii):

Case (i) : µ = ∞, Case (ii) : µ = 0, Case (iii) : 0 < µ < ∞. (1.5)

Our main result is Theorem 2.1 of Section 2 which states that the ‘simultaneous limit’ of SN,n(τ ) exists in the sense of weak
convergence of finite-dimensional distributions, and is different in all three Cases (i)–(iii), namely,

N−1nβ−(1/2)SN,n(τ )→fdd σβB(1/2)−β(τ ) in Case (i), (1.6)

N−1/(1+β)n−1/2SN,n(τ )→fdd WβB(τ ) in Case (ii), (1.7)

N−1/(1+β)n−1/2SN,n(τ )→fdd µ
1/2Zβ(τ/µ) in Case (iii). (1.8)

Here, B(1/2)−β is a standard fractional Brownian motion with Hurst parameter H = (1/2) − β , σβ is a constant defined in
Proposition 2.2(ii),Wβ > 0 is a (1+ β)-stable r.v. independent of a standard Brownian motion B, and Zβ is an ‘intermediate
process’ defined as the double stochastic integral

Zβ(τ ) :=


R×R+

 τ

0
e−x(u−s)1(s ≤ u)du


dB(s)N(dx), τ ≥ 0, (1.9)

where N = {N(dx), x ∈ R+} is a Poisson random measure on R+ := (0,∞) with intensity ν(dx) := EN(dx) := ψ1xβdx,
independent of standard Brownian motion B. The existence of the process Zβ in (1.9) and its properties are discussed in
Section 2. In particular, we show that Zβ can be regarded as a ‘bridge’ between the limit processes in Cases (i) and (ii), in the
sense that Zβ behaves as B(1/2)−β at ‘small scales’ and asWβB at ‘large scales’. See Proposition 2.2 for rigorous formulation.

The present paper extends our previous work (Pilipauskaitė and Surgailis, 2014), where a similar problemwas discussed
for stationary random-coefficient AR(1) processes Yi = {Yi(t), t ∈ Z}, i = 1, . . . ,N with independent (or idiosyncratic)
innovations:

Yi(t) = aiYi(t − 1)+ εi(t), t ∈ Z, (1.10)

where {εi(t), t ∈ Z} are independent copies of {ε(t), t ∈ Z} in (1.1), independent of ai ∈ [0, 1), i = 1, . . . ,N . Let
SN,n(τ ) :=

N
i=1


[nτ ]
t=1 Yi(t), τ ≥ 0, be the analogue of SN,n(τ ) in (1.2). Under Assumption A1 with −1 < β < 1 and N, n
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