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a b s t r a c t

Assume that an original general linear model is misspecified by adding some new regres-
sors. We investigate in such a case relationships between the best linear unbiased estima-
tors under the two models. In particular, we give necessary and sufficient conditions for
the best linear unbiased estimators to be equal under the two models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a general linear model

M = {y, Xβ, 6}, (1.1)

where X ∈ Rn×p is a known matrix of arbitrary rank, β ∈ Rp×1 is a vector of fixed but unknown parameters, y ∈ Rn×1 is an
observable random vector with E(y) = Xβ and Cov(y) = 6, and 6 ∈ Rn×n is a known or unknown non-negative definite
(nnd) matrix of arbitrary rank.

With the numbers of observations fixed in (1.1), we often face with the task of comparing two models by adding or
deleting regressors in the model. If we take (1.1) as a correct model and add regressors Zγ , we obtain a misspecified model

N = {y, Xβ + Zγ, 6}, (1.2)

where Z ∈ Rn×q is a known matrix of arbitrary rank, γ ∈ Rq×1 is a vector of fixed but unknown parameters, and E(y) =

Xβ + Zγ and Cov(y) = 6. Conversely, if taking (1.2) as a correct model with the model matrix [X, Z]:

N =


y, [X, Z]


β
γ


, 6


, (1.3)
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then (1.1) is a new model with a misspecified model matrix [X, 0]:

M =


y, [X, 0]


β
γ


, 6


. (1.4)

Assume that we want to estimate the vector of parametric functions Kβ, where K ∈ Rk×p is given. The purpose of this note
is to establish possible equalities between the best linear unbiased estimators (BLUEs) of Kβ under (1.1) and (1.2). This kind
of work was first proposed and studied by Bhimasankaram and Jammalamadaka (1994), and then by Jammalamadaka and
Sengupta (1999, 2007). Under the assumptions in (1.1) or (1.2), the BLUEs of Kβ are not necessarily the same, and one of
which is misspecified. In this note, we take (1.1) as a correct model and give a new investigation to the relations between
BLUEs of Kβ under (1.1) and (1.2) through a variety of matrix rank formulas.

Throughout this note, Rm×n stands for the collection of allm × n real matrices. The symbols A′, r(A) and R(A) stand for
the transpose, rank and range (column space) of a matrix A ∈ Rm×n, respectively; Im stands for the identity matrix of order
m. The Moore–Penrose inverse of A ∈ Rm×n, denoted by A+, is defined to be the unique solution X satisfying the four matrix
equations AXA = A,XAX = X, (AX)′ = AX and (XA)′ = XA. Further, let PA, EA and FA stand for the three orthogonal pro-
jectors (symmetric idempotent matrices) PA = AA+, EA = Im − AA+ and FA = In − A+A, where EA and FA satisfy EA = FA′

and FA = EA′ , and the ranks of EA and FA are r(EA) = m − r(A) and r(FA) = n − r(A), respectively. The symbols i+(A) and
i−(A) stand for the positive and negative inertias of A = A′

∈ Rm×m, which are defined to be the number of the positive and
negative eigenvalues of A counted with multiplicities, respectively. For two symmetric matrices A and B of the same size,
A 4 B means that B − A is nnd.

2. Preliminaries

The linear regressionmodel is one of themost widely-usedmodels in statistical analysis, which is also the foundation for
more advancedmethods. In the estimation theory of regressionmodels, the BLUEs ofKβ under (1.1) have beenmain objects
of study due to their simple and optimal statistical properties. Assume that K ∈ Rk×p is a given matrix. Then the vector of
parametric functions Kβ is said to be estimable under (1.1) if there exists a matrix L ∈ Rk×n such that the expectation
E(Ly) = Kβ holds; see, e.g., Alalouf and Styan (1979).

Assume that Kβ is estimable under (1.1), and let S be the collection of all Ly − Kβ with E(Ly) = Kβ, i.e.,

S = {Ly − Kβ | E( Ly − Kβ) = 0, L ∈ Rk×n, K ∈ Rk×p
}. (2.1)

Note that Ly − Kβ in S is not necessarily unique. Thus it is natural to seek an element of S according to a certain optimal
criterion as the best choice for all unbiased estimators of Kβ. A well-known case is to find an element of S that minimizes
the covariance matrix of Ly − Kβ ∈ S in the Löwner partial ordering, i.e., to find L0y − Kβ ∈ S such that

Cov(L0y − Kβ) 4 Cov( Ly − Kβ ) s.t. Ly − Kβ ∈ S. (2.2)

Note that Cov( Ly − Kβ ) = E[( Ly − Kβ )( Ly − Kβ )′] under (2.1), where ( Ly − Kβ )( Ly − Kβ )′ is the well-known matrix
loss function of Ly with respect to Kβ; see Rao (1976). Thus (2.2) is also equivalent to

E[( L0y − Kβ )( L0y − Kβ )′] 4 E[( Ly − Kβ )( Ly − Kβ )′] s.t. Ly − Kβ ∈ S. (2.3)

The estimator L0y satisfying this inequality is the well-known BLUE of the parameter vector Kβ under (1.1) and is denoted
by BLUEM (Kβ). If K = X, the estimator L0y satisfying (2.2) is the BLUE of the mean vector Xβ in (1.1) and is denoted by
BLUEM (Xβ). Eqs. (2.1) and (2.2) show that the BLUE under (1.1) is in fact a quadratic matrix-valued function optimization
problem over a given matrix set. This kind of problems on the minimization of covariance matrices of estimators occurs
everywhere in statistics, which can be regarded as some special cases of optimization problems on quadratic matrix-valued
functions in the Löwner sense. In this case, matrix theory plays an important role in solving this kind of estimation problems
in regression analysis.

Some new and useful theory on optimization problems of quadratic matrix-valued functions was developed in recent
years. Thus, many minimization problems on covariance matrices of estimators in statistics can be solved analytically. A
recent result on constrained quadraticmatrix-valued function optimization problem related to (2.1) and (2.2) is given below;
see Tian (2012).

Lemma 2.1. Let A ∈ Rn×p and B ∈ Rm×p be given, and P = P′
∈ Rn×n be nnd. Also assume that there exists X0 ∈ Rm×n such

that X0A = B. Then the maximal positive inertia of X0PX′

0 − XPX′ subject to all solutions of XA = B is

max
XA=B

i+(X0PX′

0 − XPX′ ) = r

X0P
A′


− r(A) = r(X0PEA). (2.4)

Hence there exists solution X0 of X0A = B such that

X0PX′

0 4 XPX′ (2.5)
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