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a b s t r a c t

Brown et al. (2006) derive a Stein-type inequality for the multivariate Student’s t-
distribution. We generalize their result to the family of (multivariate) generalized hyper-
bolic distributions and derive a lower bound for the variance of a function of a random
variable.
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1. Introduction

Stein’s lemma (Stein, 1973) shows that for a bivariate normally distributed random vector (X, Y )T ,

Cov[h(X), Y ] = Cov[X, Y ]E[h
′

(X)]. (1)

Here, h(x) is any differentiable function such that E[|h′(X)|] exists. When X = Y , this equality is also known as Stein’s
identity. As this result has wide applicability in statistics, insurance and finance, much effort has been devoted to the de-
velopment of extensions and generalizations. In this regard, note that Diaconis and Zabell (1991) have shown that (1) only
holds when (X, Y )T is bivariate normally distributed so that any generalizationmust involve somemodification of this basic
equality.

Further developments include Adcock (2007) who derived a version of Stein’s lemma in the case of skew-normal dis-
tributions, and Landsman (2006) who generalized Stein’s lemma to bivariate elliptical distributions. More precisely, this
author showed that if (X, Y )T is an elliptical random pair,

Cov[h(X), Y ] = Cov[Y , X]E[h′(X∗)], (2)

where X∗ denotes a random variable that is associated with X but does not share the same density function, except in the
normal case (a feature that is consistentwith the aforementioned result of Diaconis and Zabell (1991). In particular, if (X, Y )T
is bivariate t-distributed withm degrees of freedom, then X∗ is a t-distributed variable withm − 2 degrees of freedom (see
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Landsman, 2006). Interestingly, Brown et al. (2006) show that Stein’s identity for normally distributed risks still holds as an
inequality for t-distributions. More precisely, using the heat equation these authors find that

Cov[h(X), X] ≥
m

m − 1
E[h′(X)], (3)

where X follows a classical Student’s t-distribution with m (m > 2) degree of freedom and h is a non-decreasing differen-
tiable function.

Note that all mentioned expressions (1)–(3) can be readily generalized to random vectors X (and Y). In fact, Brown et al.
(2006) derived amultidimensional version of the inequality (3) and used it to show that X is inadmissible for estimating the
location vector of themultivariate t-distribution. Our paper ismostly related to theirs.Wemake the following contributions:

We build on Stein’s lemma directly to provide a short proof for the inequality result (3) of Brown et al. (2006) andwe gen-
eralize it to the family of (multivariate) generalized hyperbolic distribution (which includes the multivariate t-distribution
as a special case). In passing, we also provide an elementary proof of Stein’s identity (1) as this appears to be missing in the
literature.

We also provide two applications. The first application consists in using the newly proposed Stein inequality to prove
inadmissibility ofX for estimating the location parameter whenX followsmultivariate generalized hyperbolic distributions,
and we propose (biased) estimates of the form X + H(X) that are dominating. As a second application, we use Stein’s
inequality to obtain a simple lower bound for the variance of a function of a random variable. This bound is closely related
to the standard Chernoff-type bound.

This rest of the paper is organized as follows. We first recall the definition of multivariate elliptical distributions and
recall Stein’s seminal lemma in Section 2. In Section 3, we extend the stated Stein-inequality (3) to the family of generalized
hyperbolic distributions. We show that the results in Brown et al. (2006) are a special case of ours. Section 4 provides the
two mentioned applications of the Stein-inequality and Section 5 concludes the paper.

2. Stein’s lemma for multivariate elliptical distributions

Definition 1 (Multivariate Elliptical Distribution). We say that the random vector X = (X1, . . . , Xn)
T has an elliptical distri-

bution with parameters the n × 1 vector µ and the n × n positive definite matrix 6 if its characteristic function is given by

E

exp


itTX


= exp


itTµ


φ


tT6t
2


, tT = (t1, t2, . . . , tn) , (4)

for some scalar function φ(t)which is called the characteristic generator. We then write X ∼ En (µ,6, φ).

A necessary and sufficient condition for the function φ to be a characteristic generator of an n-dimensional elliptical
distribution is given in Theorem 2.2 of Fang et al. (1990). In this note, we always assume that every mentioned ellipsoidal
random vector X ∼ En (µ,6, φ) has a density function fX (x) with vector of expectations µ and covariance matrix 6 (the
latter is obtained by choosing φ′(0) = −1, see Fang et al. (1990)). The density fX (x) is of the form

fX (x) =
1

√
|6|

gn


(x − µ)T 6−1 (x − µ)

2


, (5)

where gn is a non-negative measurable function such that


Rn gn( x
T x
2 )dx1 . . . dxn = 1, gn is usually called the density genera-

tor. We can now also denote the n-dimensional elliptical distribution that arises from the function gn (corresponding to the
characteristic generating function φ) as X ∼ En(µ,6, gn). Fang et al. (1990) have shown that if X ∼ En(µ,6, gn), then all
m-dimensional marginals (1 ≤ m < n) are also elliptically distributed, with a density generator gm that can be expressed
in terms of gn as

gm(u) =
(2π)n/2

Γ ((n − m)/2)


∞

u
(y − u)(n−m)/2−1gn(y)dy.

It is well-known that elliptical family is closed under the affine transform, i.e. when X ∼ En (µ,6,φ) then for any m × n
matrix B with rank m (m ≤ n) and anym × 1 vector c it holds that

BX + c ∼ Em

Bµ + c, B6BT , φ


, (6)

see e.g. Fang et al. (1990). Inwhat follows, letX be an n-dimensional vector and Y bem-dimensional.We denote by Cov[X, Y]

the n × mmatrix defined as

(Cov[X, Y])i,j := Cov[Xi, Yj], i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

When Y = X we simply write Cov[X] instead of Cov[X, Y]. Furthermore, we denote by Cov[X, Y ] an n × 1 matrix and by
Cov[Y ,X] a 1 × n matrix that are respectively defined as,

(Cov[X, Y ])i := Cov[Xi, Y ],

(Cov[Y ,X])i := Cov[Y , Xi], i = 1, 2, . . . , n. (7)
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