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a b s t r a c t

We consider robust testing on the regression parameter of a partially linear regression
model, where missing responses are allowed. We derive the asymptotic behavior of the
proposed test statistic under the null and contiguous alternatives. A numerical study is
performed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Non-parametric regressionmodels suffer from the curse of dimensionalitywhen the dimension of the covariates increases.
Therefore, introducing some structure in the regression function the statistical analysismay becomemore efficient. Partially
linear models (plm) provide a solution to a large number of covariates by assuming that the regression function has two
components: one depending linearly on some of the covariates, while the other one is non-parametric. In particular, plm
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came to be more popular in the last years due to their flexibility, since the two components allow them to adapt to a wide
class of situations. Sometimes, little is known about the relation among the response and some of the independent variables
and hence, when the form of functional relation is unspecified, the use of a non-parametric component is recommended. In
these situations, plm are an appealing choice.

More formally, under a plm, it is assumed that the response yi ∈ R and the covariates (xti , ti), xi ∈ Rp, ti ∈ R, are such
that

yi = xti β + g (ti)+ σϵi, 1 ≤ i ≤ n, (1)

where the errors ϵi are i.i.d., independent of (xti , ti) with symmetric distribution F0(·). That is, we assume that the error’s
scale equals 1 so as to identify the scale parameter as σ . We will not require any moment conditions on the errors distri-
bution, but we only assume that the scale parameter for the errors equals 1. When the existence of seconds moments is
assumed, as it is the case of the classical approach, these conditions imply that E(ϵi) = 0 and Var (ϵi) = 1, which entails
that, in this situation, σ represents the standard deviation of the responses conditional to the covariates.

Härdle et al. (2000, 2004) give an extensive description of different results obtained in plm. In particular, in the context
of hypothesis testing, Gao (1997) considers asymptotic test statistics for the problem H0 : β = 0, while González Manteiga
and Aneiros Pérez (2003) studied the case of dependent errors. Classical procedures based on local polynomials and least
squares estimation can be seriously damaged by a small fraction of anomalous observations. Robust estimates under the
partly linearmodel were considered in He et al. (2002), whereM-type estimates for repeatedmeasurements using B-splines
are introduced. On the other hand, Bhattacharya and Zhao (1997) define a

√
n-consistent estimator ofβ by taking differences

of the observations and combining a bandwidth-matchedM-estimation procedurewith kernel weights, when p = 1 and the
carriers x lie in a compact set. Bianco and Boente (2004) introduce a kernel-based three-step procedure in order to achieve
robustness against anomalous data including high leverage points in x.

Nevertheless, in practice, not all the responses may be available, this may be planned or unplanned. The methods de-
scribed above are designed for complete data sets and problems arise whenmissing observations are present. In some cases,
people may refuse to provide some kind of information, in others, the response variable may be very expensive or difficult
to measure. Also, sometimes there may be loss of information in the registration process or the researcher may fail to col-
lect the full information. There are many situations in which both the response and the explanatory variables have missing
values, however we will focus our attention on those cases where missing data occur only in the responses.

Wang et al. (2004) considered regression imputation of missing responses based on partly linear regression model
in order to make inference on the mean of y. The estimator of β, introduced by Wang et al. (2004), is a least squares
regression estimator defined by considering preliminary kernel estimators, of the quantities E(δ1x1|t1 = t)/E(δ1|t1 = t)
andE(δ1y1|t1 = t)/E(δ1|t1 = t), where δi = 1 if yi is observed and δi = 0 if yi is missing. Estimators of themarginal mean of
the response y based on the obtained estimator of the regression parameter are defined using an imputation estimator and
also propensity score weighting estimators. Wang and Sun (2007) studied estimators of the regression coefficients and the
nonparametric function using either imputation, semiparametric regression surrogate or an inverse marginal probability
weighted approach. Since these estimators are based onweightedmeans of the response variables, they are highly sensitive
to outliers. The lack of robustness of weighted means procedures pushed on the search of procedures resistant to outliers
as those given in Bianco et al. (2010), who introduced robust estimators based on bounded score functions together with
algorithms to compute them. In this paper, we go further and we focus our attention on inference regarding the parametric
component, when the response variable has missing observations, but the covariates (xt, t) are totally observed.

The rest of the paper is organized as follows. Section 2 reviews the definition of the robust semiparametric estimators
defined in Bianco et al. (2010) and recalls some previous results. In Section 3, the Wald test statistics are introduced, while
their asymptotic distribution is derived under the null hypothesis and under contiguous alternatives in Section 3.1. The
results of a simulation study are reported in Section 4, while some final comments are given in Section 5. Technical proofs
are left to the Appendix.

2. Preliminaries

Consider a random sample of incomplete data

yi, xti , ti, δi


, 1 ≤ i ≤ n, of a partially linear model where δi = 1 if yi is

observed, δi = 0 if yi is missing, and the responses yi satisfy model (1).
As mentioned above, our goal is to introduce robust tests to check hypotheses that engage the regression parameter β

in the case where responses are possibly missing, in particular when they are missing at random (MAR). This means that if
(y, xt, t, δ) has the same distribution as


yi, xti , ti, δi


, δ is conditionally independent of the response y given (xt, t). In other

words, we assume an ignorable mechanism such that P (δ = 1|(y, xt, t)) = P (δ = 1|(xt, t)) = p (x, t).
One may wonder if, ignoring the vectors with missing responses, we will still obtain robust and consistent procedures.

That is, if the robust estimators given in Bianco and Boente (2004) applied to the observations {zi1 , . . . , ziN } = {(yi, xti ,
ti)t}δi=1, where N =

n
i=1 δi, lead to asymptotically unbiased estimators so that, the tests defined through them in Bianco

et al. (2006), turn out to be consistent. This is one of the conditions needed to successfully apply the transfer principle de-
scribed in Koul et al. (2012). However, as mentioned in Bianco et al. (2010), a profile-likelihood procedure is needed to
obtain consistent estimators for a wide class of situations when dealing with missing responses. Indeed, the robust estima-
tors proposed in Bianco and Boente (2004) are not Fisher-consistent, unless the probability of missing responses is of the
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