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a b s t r a c t

Under some regularity conditions, the paper provides an alternative proof for the revised
moment conditions proposed by Hong and Tamer (2003) in the nonlinear least squares
regression model, when the covariates are measured with Laplace error. The asymptotic
normality of the revised moment estimates is developed. The choice of optimal weight
functions is also discussed and a nearly optimal weight function is identified. Moreover, a
simulation extrapolation estimation procedure is suggestedwhen the estimating equations
based on the revised moment conditions are difficult to solve. Simulation studies are
conducted to evaluate the finite performance of the proposed methods.

Published by Elsevier B.V.

1. Introduction

Constructing proper estimating equations is a commonly used and often effective way to find the estimates for the
unknown parameters in many econometric models. The estimating equations are usually the sample versions of their
population analogs. For example, the parameter of interest, say β, might be defined by a set of population moment
conditions, Em(X; β) = 0,whereX = (X1, . . . , Xk)

τ is a k-dimensional randomvector,β = (β1, . . . , βp)
τ is a p-dimensional

vector of unknown parameters to be estimated, andm(·; ·) is a vector of functions. For any vector or matrix, the superscript
τ means transposition. Econometric and statistical literatures are abundant in solving the estimation equations, as well
as the discussion of the large sample properties of the resulting estimates. In many real applications, the vector X may
not be observed directly. Instead, a surrogate Z = (Z1, . . . , Zk)τ is available, which related to X additively through the
relationship Z = X + U, where U = (U1, . . . ,Uk)

τ is called the measurement error. It is well known that the presence
of measurement error often creates some model identification problems. See Fuller (2006) for such examples. To identify
the model parameters, we can either impose stronger distributional assumptions on random entities in the model, or seek
extra data resources, such as the validation data set and replication measurements. Hong and Tamer (2003) tackled the
identifiability problem by assuming the p random variables in U to be independent and each follows a Laplace distribution
withmean 0 and unknownvariance.Moreover, under the Laplacemeasurement error, themoment conditions Em(X;β) = 0
can be replaced by the revised moment conditions based on the observed variables only.

To be specific, suppose the measurable function m(x; β) satisfies the Assumption 3 in Hong and Tamer (2003). Then
follows a Laplace distribution with characteristic function φU(t) =

k
j=1(1+ σ 2

j t
2
j /2)

−1, where t = (t1, . . . , tp)τ , then they
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showed that

Em(X; β) = Em(Z; β)+

k
l=1


−

1
2

l
· · ·


j1<···<jl

σ 2
j1 · · · σ 2

jl E
∂2lm(X;β)

∂X2
j1

· · · ∂X2
jl

. (1)

If the revised moment conditions are sufficient for identifying σ and β , then the estimating equations based on the sample
version of the above revised moment conditions can be employed to derive the estimates and show their consistency and
asymptotic normality. However, if the revised moment conditions cannot completely identify the unknown parameters,
some identified features can be still consistently estimated by the so called modified moment estimation procedure using
some side information about the relativemagnitude of themeasurement error variances. Themethodology cannot be easily
extended to normal measurement error model case unless the functionm has some simpler structures, such as polynomial
or exponential. In fact, the similar differentiation idea was already adopted in the Masry and Rice (1992) when dealing with
the deconvolution density estimate. Although Masry and Rice (1992) mainly discuss the normal measurement error case,
they did mention that the same technique could be used for Laplace measurement error case.

Hong and Tamer (2003) provided a very nice proof for (1) using the deconvolution relationship between the density
functions of X and Z. Another way of proving (1) is to consistently estimate the left hand side of (1) using the deconvolution
kernel density estimate, then show the estimate also converges to the right hand side of (1) in probability. To be specific, let
K be a symmetric kernel density function and bn denote a sequence of bandwidth depending on the sample size n, then a
consistent deconvolution kernel estimate for the density function of X can be written as

f̂ (x) =
1

nbkn

n
j=1

Ln


x − Zj

b


, (2)

where Ln(x) is defined by

Ln(x) =

k
l=1

1
2π


exp(−itlxl)

ψK (tl)
ψUl(tk/bn)

dt, i2 = −1,

where x = (x1, . . . , xk), Zj = (Zj,1, . . . , Zj,k)τ , and for any generic random variable or vector X ,ψX denotes its characteristic
function. If we choose K to be the standard normal density function φ, then

Ln(x) =

k
l=1


φ(xl)−

σ 2
l

2b2n
φ′′(xl)


.

Accordingly, an estimate of Em(X; β) can be obtained by directly calculating the expectation ofm(X; β)with respect to f̂ (x).
In fact

Em(X; β) =
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m(x; β)
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dx. (3)

We can show that under some regularity conditions, the right hand side of the above equality is a consistent estimator of
the right hand side of the revised moment formula. A sketch of the proof can be found in Section 5.

The significance of Theorem 1 of Hong and Tamer (2003) is demonstrated by the fact that in Laplace measurement error
case, the estimating equations based on the true variables, which cannot be used in real application due to the lack of
observations for mismeasured variables, can be replaced by estimating equations involving second order partial derivatives
of the original estimating functions based on the observed variables. Therefore, one can estimate the unknown parameters
just like we are facing a classic estimation problem. Similar phenomenon can be found in nonparametric regression with
Laplace measurement error. In fact, Example 2 from Fan and Truong (1993) shows that estimating the regression function is
equivalent to estimating up to the second order derivative of the regression function of the response variable on the observed
surrogates.

In the nonlinear regression setup, Hong and Tamer (2003) provided explicit revised moment conditions and indicated
that these conditions could be justified by using (1), see Example 2 in Hong and Tamer (2003). To be specific, suppose the
parametric regressionmodel is E(Y |X = x) = g(x; β), where Y is a scalar response variable and X is a scalar predictor, g is a
known twice differentiable function, and E[Y 2

|X = x] is finite. For anymeasurable function h(·)with finite secondmoment,
possibly vector-valued, we have E[h(X)(Y −g(X; β))] = 0. Then based on (1), the authors claimed that the revisedmoment
conditions are

E

h(Z)R(Y , Z; β)−

σ 2

2


h′′(Z)R(Y , Z; β)− 2h′(Z)g ′(Z;β)− h(Z)g ′′(Z; β)


= 0, (4)
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