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a b s t r a c t

Efficient semiparametric estimation of longitudinal causal effects is often analytically or
computationally intractable. We propose a novel restricted estimation approach for in-
creasing efficiency, which can be used with other techniques, is straightforward to imple-
ment, and requires no additional modeling assumptions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Locally efficient semiparametric estimation of causal effects in longitudinal studies can be analytically or computation-
ally intractable; however, more simple and straightforward estimation techniques can be very imprecise. In this work we
develop an approach for deriving more efficient estimators of parameters in such settings based on the idea of optimal
restricted estimation, i.e., finding estimators that are optimally efficient among all those within some restricted class. In
essence our approach amounts to finding optimal linear combinations of estimating functions, using constant coefficient
matrices. The proposed approach can be used in conjunction with other techniques (such as those based on local efficiency
derivations), is straightforward to implement, requires neither extra modeling assumptions nor extra model fitting, and
comes with guarantees of better (or at least no worse) asymptotic efficiency. It can be viewed as a way to give analysts
extra chances at attaining the semiparametric efficiency bound. We explore finite sample properties of our approach using
simulated data.

2. Setup

Many important models in longitudinal causal inference, including structural nested models (Robins, 1989, 1994) and
marginal structural models (Robins, 2000; Hernán et al., 2002), lead to estimators that solve (at least up to asymptotic
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Fig. 1. Directed acyclic graph of data structure assuming only time ordering.

equivalence) estimating equations of the form

Pn


K

t=1

mt(ψ; η̂, h)


= 0

where Pn is the empirical measure so that Pn(W ) = n−1 
i Wi denotes a usual sample average,mt is an estimating function

of the same dimension as the parameter of interestψ ∈ Rq, η is a nuisance function taking values in somemetric space, and
h is an arbitrary function that affects the efficiency but not consistency of the estimator.

For example, in many settings the observed data consist of sequences of time-varying measurements of covariates L,
treatment A, and outcome Y for each of n subjects. Let an overbar denote the past history of a variable so thatW t = (W1,W2,
. . . ,Wt), and let Xt = (Lt , Y t , At−1) represent the observed data available just prior to treatment at time t . Also for simplicity
assume no censoring and discrete measurement times t = 1, . . . , K . Then a standard longitudinal study would yield an in-
dependent and identically distributed sample of observations (Z1, . . . , Zn), with Z = (LK , AK , Y K+1). Fig. 1 shows a directed
acyclic graph illustrating this data structure, allowing for the presence of unmeasured variables U and only incorporating
the assumed time ordering.

Let Y at
t+1 denote the potential outcome that would have been observed for a particular subject had that subject taken

treatment sequence at up to time t . Then a standard repeated measures marginal structural mean model (MSMM) (Robins,
1989, 1994) assumes

E

Y at
t+1 | V = v


= gt(at , v;ψ)

for t = 1, . . . , K and gt specified functions known up to the parameter of interest ψ , where V ⊆ L1 is an arbitrary subset
of baseline covariates whose modification of the effect of treatment is of particular interest. Similarly a standard structural
nested mean model (SNMM) (Robins, 2000; Hernán et al., 2002) assumes that

E

Y at ,0
K+1 − Y at−1,0

K+1 | Xt = xt , At = at


= γt(xt , at;ψ)

for t = 1, . . . , K , where the specified functions γt (also known up toψ) are restricted so that γt(xt , 0;ψ) = 0 since Y at ,0
K+1 −

Y at−1,0
K+1 = 0 if at = 0. We consider linear SNMMs for effects on the last outcome for ease of notation, but one could similarly

use a log link or repeatedmeasuresmodels for effects on all outcomes. One could also consider versions of the abovemodels
that contrast functionals other than the mean (e.g., percentiles).

As discussed by van der Laan and Robins (2003), Tsiatis (2006), and others, under standard ‘no unmeasured confounding’
identifying assumptions (e.g., sequential ignorability, or Y aK

t+syAt | Xt for t = 1, . . . , K and s = 1, . . . , K + 1− t), estimating
functions mt under the above MSMMs and SNMMs are given by mt(ψ; η, h) = φt(ψ; ηa, h) − E{φt(ψ; ηa, h) | Xt , At} +

E{φt(ψ; ηa, h) | Xt} where

φt(ψ; ηa, h) =


ht(At , V )


Yt+1 − gt(At , V ;ψ)

t
s=1

p(As | Xs)

 for MSMMs


ht(Xt , At)−


ht(Xt , at)p(at | Xt) dν(at)

 
YK+1 −

K
s=t

γs(Xs, As;ψ)


for SNMMs,

with the functions p(at | xt) denoting the conditional density of treatment given observed history, and ν a dominatingmea-
sure for the distribution of treatment. In this setting the nuisance functionη = (ηa, ηy) consists of two variation independent
components; ηa denotes the conditional treatment densities p(at | xt) and ηy denotes the conditional outcome/covariate
densities p(lt , yt | xt−1, at−1). Importantly, the functions ht : Dt → Rq (where Dt = (At , V ) for MSMMs and Dt = (Xt , At)
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