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a b s t r a c t

In this article, we obtain generic stochastic representations and asymptotic distributions of
gene–gene correlations with respect to differential magnitudes, residual correlations, and
sample size of experiment. Our results establish theoretical foundation for tight clustering
of co-expressed genes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Advanced high-throughput technologies can assay expressions of thousands of genes simultaneously. Massive multi-
omics data provide the potential to identify changes at RNA and protein levels between different biological (e.g., different
developmental stages) or experimental conditions (e.g., treatment and control). In transcriptomics and proteomics
experiments, two fundamental challenges are ranking and identifying differentially expressed genes givenmoderate sample
sizes (typically called a ‘‘large p small n’’ problem). Various statistical procedures have been developed for gene ranking in
two-sample transcriptomics and proteomics experiments, e.g., the Significance Analysis of Microarrays (SAM) t (Tusher
et al., 2001), the moderated t (Smyth, 2004) and theWelch type t (Hu andWright, 2007). These statistics are constructed to
pool information across genes, and thus may improve ranking efficiency over the standard two-sample t . However, these
popular methods do not explicitly exploit the correlations between co-expressed genes. As a result, these approaches could
claim too many false positives (Morley et al., 2004; Wacholder et al., 2004).

To prevent the flood of false positives, multiple-testing corrections should be employed, e.g., Bonferroni correction
(Hochberg, 1988; Holm, 1979) and false discovery rate (FDR) approaches (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001). For this, one may appreciate the explicit null distribution of the adopted statistic to claim which genes are
significantly differentially expressed. If the null distribution is intractable, e.g., that of the SAM t , one has to rely on per-
mutation to claim significantly differentially expressed genes and estimate their corresponding FDRs. It is well-known that
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permutation is not an appropriate method when the sample size is small (e.g., n < 10). There are other procedures in the
literature that can handle correlations (Efron, 2007; Pawitan et al., 2006; Qiu et al., 2005), which exhibit some improved
performances over standard procedures, but such improvements are mostly expressed in terms of reduced variance. The
FCPC approach (Qin et al., 2008) explicitly utilizes gene–gene correlation to boost statistical power while preventing false
positives in expression experiments. Again, this approach was developed according to empirical observations. The WGCNA
R software package (Langfelder and Horvath, 2008) provided comprehensive functions for performing various aspects of
weighted correlation network analysis.

As to be theoretically shown, gene–gene correlation in expression data has particular properties. Inmultivariate statistics,
there exist theoretical results on sample correlation (Fang and Zhang, 1990; Ruben, 1966). Such results assume that all
the bivariate data points are generated from an identical bivariate normal distribution. In a two-condition experiment
(e.g., treatment and control), however, the distribution of bivariate data points in treatments differs from that in controls.
Thus, the Bartlett decomposition and extensions (Li and Geng, 2003) in conventional correlation theory do not apply. The
remaining of this article is organized as follows. In Section 2, we provide problem formulation to model the gene–gene
correlations in transcriptomics and proteomics and connect it with the tight clustering algorithm (Qin et al., 2008). In
Sections 3–5, we theoretically and numerically investigate the exact and asymptotic statistical behaviors of gene–gene
correlation under different scenarios. In Section 6, we summarize the results of our theoretical and numerical findings.
All technical proofs and numerical illustrations are presented in the Supplementary (see Appendix A).

2. Problem formulation

In two-condition (e.g., treatment and control) transcriptomics/proteomics experiments, the bivariate normal model is
commonly employed, either implicitly or explicitly, to describe the relationship between the expression levels (x, y) of two
genes. For ease of understanding, we focus on the following bivariate model

xi
yi


=


(ui, vi)

′ for i = 1, . . . , n0,

(µ+ ui, ν + vi)
′ for i = n0 + 1, . . . , n0 + n1

def
= n,

(1)

where (xi, yi)’s denote observed expression levels of subject i, µ and ν denote unknown real treatment means and (ui, vi)’s
denote a set of mutually independent bivariate normal vectors of mean 0, variance 1, and unknown correlation ρ ∈ (−1, 1),
namely,

ui
vi


∼ N


0
0


,


1 ρ
ρ 1


. (2)

Under this model, µ and ν represent real treatment mean expression levels of two genes, respectively, and ρ reflects the
residual dependency between the two expression levels except for the treatment effects. As in classical context, the Pearson
coefficient of correlation between the expression levels of these two genes, i.e., x = (x1, . . . , xn)′ and y = (y1, . . . , yn)′, is
defined as

rxy = (x′y − nx̄ȳ)/


x′x − nx̄2
 

y ′y − nȳ2

, (3)

where x̄ denotes the mean of all xi’s, and ȳ denotes the mean of all yi’s, respectively. When µ = ν = 0, namely, both
genes are stably expressed, (xi, yi)’s are independent duplicates from the bivariate normal distribution with zero mean and
correlation ρ. For this case, an unbiased estimator of ρ can be constructed in terms of rxy (Olkin and Pratt, 1958), and the
properties of rxy per se are well addressed in the literature, which are summarized in Section 3. However, whenµ2

+ν2 ≠ 0,
the statistic rxy has different properties from the ordinary sample correlation. Sections 4 and 5 address the properties of rxy
when one and both of µ and ν are zero, respectively.

In forward search clustering, we can assign a gene to a cluster if the minimum of the correlations between the gene and
the genes in the cluster exceeds a tightness threshold ρ0(> 0). For any pair of genes, define r̃xy = rxy/


1 − r2xy. Then, the

tail probability

ψ (ρ0)
def
= Pr


rxy ≥ ρ0


= Pr

√
n − 2r̃xy ≥

√
n − 2ρ̃0


(4)

measures the probability to cluster them to an identical cluster of tightness ρ0 ∈ (0, 1), where ρ̃0 = ρ0/


1 − ρ2

0 . It is well

known that
√
n − 2r̃xy ∼ tn−2 if the two genes are stably expressed across controls and treatments with ρ = 0 (Section 3).

In context, we investigate the distributional properties of rxy and the performances of the tail probability ψ .

3. Statistical properties of correlations between stably expressed genes

In the scenario ofµ = ν = 0, rxy is a well-known consistent estimator for ρ as sample size n tends to infinity. For large n,
Ruben (1966) obtained a simple approximate normalization for r̃xy. This approximation outperforms the usual large-sample
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