ELSEVIER

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Random walks in I.I.D. random environment on Cayley trees

Siva Athreya a, Antar Bandyopadhyay b,c,*, Amites Dasgupta c

- ^a Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560059, India
- ^b Indian Statistical Institute, 7 S. J. S. Sansanwal Marg, New Delhi 110016, India
- ^c Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700 108, India

ARTICLE INFO

Article history: Received 29 October 2013 Received in revised form 23 April 2014 Accepted 25 April 2014 Available online 9 May 2014

MSC: primary 60K37 60J10 05C81

Keywords: Random walk on Cayley trees Random walk in random environment Trees

Transience

ABSTRACT

We consider the random walk in an i.i.d. random environment on the infinite d-regular tree for $d \geq 3$. We consider the tree as a Cayley graph of the free product of finitely many copies of $\mathbb Z$ and $\mathbb Z_2$ and define the i.i.d. environment as invariant under the action of this group. Under a mild non-degeneracy assumption we show that the walk is always transient.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this short note we consider a random walk in random environment (RWRE) model on a regular tree with degree $d \ge 3$, where the environment at the vertices is *independent* and is also "*identically distributed*" (i.i.d.). We make this notion of *i.i.d.* environment rigorous by first defining a translation invariant model on a group G which is a free product of finitely many groups, G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, G_2, \ldots, G_k and G_2, \ldots, G_k and G_1, \ldots, G_k and

1.1. Basic setup

Cayley graph: Let G be a group defined above, that is, G is a free product of $k+r \geq 2$ groups, namely G_1, G_2, \ldots, G_k with $k \geq 0$ and H_1, H_2, \ldots, H_r with $r \geq 0$, where each $G_i \cong \mathbb{Z}$ and each $H_j \cong \mathbb{Z}_2$ and $d = 2k + r \geq 3$. Suppose $G_i = \langle a_i \rangle$ for $1 \leq i \leq k$ and $H_j = \langle b_j \rangle$ where $b_j^2 = e$ for $1 \leq j \leq r$. Here by $\langle a \rangle$ we mean the group generated by a single element a. Let $S := \{a_1, a_2, \ldots, a_k\} \cup \{a_1^{-1}, a_2^{-1}, \ldots, a_k^{-1}\} \cup \{b_1, b_2, \ldots, b_r\}$ be a generating set for G. We note that S is a symmetric set, that is, $S \in S \iff S^{-1} \in S$.

^{*} Corresponding author at: Indian Statistical Institute, 7 S. J. S. Sansanwal Marg, New Delhi 110016, India. Tel.: +91 11 4149 3932; fax: +91 11 4149 3981. E-mail addresses: athreya@isibang.ac.in (S. Athreya), antar@isid.ac.in (A. Bandyopadhyay), amites@isical.ac.in (A. Dasgupta).

URL: http://www.isid.ac.in/~antar/ (A. Bandyopadhyay).

We now define a graph \bar{G} with vertex set G and edge set $E:=\left\{\{x,y\} \mid yx^{-1} \in S\right\}$. Such a graph \bar{G} is called a (*left*) Cayley Graph of G with respect to the generating set G. Since G is a free product of groups which are isomorphic to either \mathbb{Z} or \mathbb{Z}_2 , it is easy to see that \bar{G} is a graph with no cycles and is regular with degree G, thus it is isomorphic to the G-regular infinite tree which we will denote by \mathbb{T}_{G} . We will abuse the terminology a bit and will write \mathbb{T}_{G} for the Cayley graph of G. We will consider the identity element G of G as the root of G. We will write G0 for the set of all neighbors of a vertex G1. Notationally, G1 is an automorphism of G2. Observe that from definition G2 is a free product of G3. For G4 define the mapping G5 is a nationally, G6 by G7 is an automorphism of G8. We will call G8 the translation by G8. For a vertex G8 is an automorphism of G8 we denote by G9 is an automorphism of G9. We will call G9 the translation by G9 is a vertex G9, then we define G9 as the parent of G9, that is, the penultimate vertex on the unique path from G9 to G9.

Random Environment: Let $\mathcal{S} := \mathcal{S}_e$ be a collection of probability measures on the d elements of N (e) = S. To simplify the presentation and avoid various measurability issues, we assume that \mathcal{S} is a Polish space (including the possibilities that \mathcal{S} is finite or countably infinite). For each $x \in \mathbb{T}_d$, \mathcal{S}_x is the push-forward of the space \mathcal{S} under the translation \mathcal{S}_x , that is, $\mathcal{S}_x := \mathcal{S} \circ \mathcal{O}_x^{-1}$. Note that the probabilities on \mathcal{S}_x have support on N (x). That is to say, an element $\omega(x, \cdot)$ of \mathcal{S}_x , is a probability measure satisfying

$$\omega\left(x,y\right)\geq0\quad\forall y\in\mathbb{T}_{d}\quad\text{and}\quad\sum_{y\in N(x)}\omega\left(x,y\right)=1.$$

Let \mathcal{B}_{δ_X} denote the Borel σ -algebra on δ_X . The *environment space* is defined as the measurable space (Ω, \mathcal{F}) where

$$\Omega := \prod_{\mathbf{x} \in \mathbb{T}_d} \mathcal{S}_{\mathbf{x}}, \qquad \mathcal{F} := \bigotimes_{\mathbf{x} \in \mathbb{T}_d} \mathcal{B}_{\mathcal{S}_{\mathbf{x}}}. \tag{1}$$

An element $\omega \in \Omega$ will be written as $\left\{ \omega \left(x, \cdot \right) \,\middle| \, x \in \mathbb{T}^d \right\}$. An environment distribution is a probability P on (Ω, \mathcal{F}) . We will denote by E the expectation taken with respect to the probability measure P.

Random Walk: Given an environment $\omega \in \Omega$, a random walk $(X_n)_{n \geq 0}$ is a time homogeneous Markov chain taking values in \mathbb{T}_d with transition probabilities

$$\mathbf{P}_{\omega}\left(X_{n+1}=y\Big|X_{n}=x\right)=\omega\left(x,y\right).$$

Let $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. For each $\omega \in \Omega$, we denote by $\mathbf{P}_{\omega}^{\mathsf{x}}$ the law induced by $(X_n)_{n \geq 0}$ on $((\mathbb{T}_d)^{\mathbb{N}_0}, \mathcal{G})$, where \mathcal{G} is the σ -algebra generated by the cylinder sets, such that

$$\mathbf{P}_{\alpha}^{\mathbf{x}}(X_0 = \mathbf{x}) = 1.$$
 (2)

The probability measure $\mathbf{P}_{\omega}^{\mathbf{x}}$ is called the *quenched law* of the random walk $(X_n)_{n\geq 0}$, starting at \mathbf{x} . We will use the notation $\mathbf{E}_{\omega}^{\mathbf{x}}$ for the expectation under the quenched measure $\mathbf{P}_{\omega}^{\mathbf{x}}$.

Following Zeitouni (2004), we note that for every $B \in \mathcal{G}$, the function

$$\omega \mapsto \mathbf{P}^{\chi}(R)$$

is \mathcal{F} -measurable. Hence, we may define the measure \mathbb{P}^x on $(\Omega \times (\mathbb{T}_d)^{\mathbb{N}_0}, \mathcal{F} \otimes \mathcal{G})$ by the relation

$$\mathbb{P}^{^{X}}\left(A\times B\right)=\int_{A}\mathbf{P}_{\omega}^{^{X}}\left(B\right)P\left(d\omega\right),\quad\forall A\in\mathcal{F},B\in\mathcal{G}.$$

With a slight abuse of notation, we also denote the marginal of \mathbb{P}^x on $(\mathbb{T}_d)^{\mathbb{N}_0}$ by \mathbb{P}^x , whenever no confusion occurs. This probability distribution is called the *annealed law* of the random walk $(X_n)_{n\geq 0}$, starting at x. We will use the notation \mathbb{E}^x for the expectation under the annealed measure \mathbb{P}^x .

1.2. Main results

Throughout this paper we will assume that the following holds:

(A1) P is a product measure on (Ω, \mathcal{F}) with "identical" marginals, that is, under P the random probability laws $\{\omega(x, \cdot) \mid x \in \mathbb{T}^d\}$ are independent and "identically" distributed in the sense that

$$P \circ \theta_{v}^{-1} = P, \tag{3}$$

for all $x \in G$.

(A2) For all $1 \le i \le d$,

$$E\left[\left|\log\omega\left(e,s_{i}\right)\right|\right]<\infty.\tag{4}$$

It is worth noting that under this assumption $\omega(x, y) > 0$ almost surely (a.s.) with respect to the measure P for all $x \in \mathbb{T}_d$ and $y \in N(x)$.

Download English Version:

https://daneshyari.com/en/article/7549576

Download Persian Version:

https://daneshyari.com/article/7549576

<u>Daneshyari.com</u>