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a b s t r a c t

We study randomized confidence intervals for binomial proportions, comparing coverage,
length and the impact of the randomization. It is seen that the recently proposed split
sample intervals can be improved upon in various ways. Criticism of randomized intervals
are discussed.
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1. Introduction 1

The problem of constructing confidence intervals for parameters of discrete distributions continues to attract consid- 2

erable interest in the statistical community. The lack of smoothness of these distributions causes the coverage (i.e. the 3

probability that the interval covers the true parameter value) of such intervals to fluctuate from 1 − α when either the 4

parameter value or the sample size n is altered. Recent contributions to the theory of these confidence intervals include 5

Krishnamoorthy and Peng (2011), Newcombe (2011), Gonçalves et al. (2012), Göb and Lurz (2013) and Thulin (2013a). 6

The purpose of this short note is to discuss the split sample method recently proposed by Decrouez and Hall (2014). The 7

split sample method reduces the oscillations of the coverage by splitting the sample in two. It is applicable to most existing 8

confidence intervals for parameters of lattice distributions, including the binomial and Poisson distributions. For simplicity, 9

we will in most of the remainder of the paper limit our discussion to the binomial setting, with the split sample method 10

being applied to the celebrated Wilson (1927) interval for the proportion p. Our conclusions are however equally valid for 11

other confidence intervals and distributions. 12

A random variable X ∼ Bin(n, p) is the sum of a sequence X1, . . . , Xn of independent Bernoulli(p) random variables. The 13

split sample method is applied to X1, . . . , Xn rather than to X . The idea is to split the sample into two sequences X1, . . . , Xn1 14

and Xn1+1, . . . , Xn1+n2 with n1 + n2 = n and n1 ≠ n2. In the formula for the chosen confidence interval, the maximum 15

likelihood estimator p̂ = X/n is then replaced by the weighted estimator 16

p̃ =
1
2

 1
n1

n1
i=1

Xi +
1
n2

n1+n2
i=n1+1

Xi


. (1) 17

The formula for the Wilson interval is 18

p̂n + z2α/2/2

n + z2α/2
±

zα/2

n + z2α/2


p̂(1 − p̂)n + z2α/2/4, 19
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where zα/2 is the α/2 standard normal quantile, so the split sample Wilson interval is given by1

p̃n + z2α/2/2

n + z2α/2
±

zα/2

n + z2α/2


p̃(1 − p̃)n + z2α/2/4.2

Decrouez and Hall (2014) showed by numerical and asymptotic arguments based on Decrouez and Hall (2013) that when3

n1 = n/2+0.15n3/4 (rounded to the nearest integer) andn2 = n−n1 the split samplemethod greatly reduces the oscillations4

of the coverage of the interval, without increasing the interval length. In the remainder of the paper, whenever n1 and n25

need to be specified, we will use these values.6

Depending on how the sample is split, different confidence intervals will result, making the split sample interval a7

randomized confidence interval. If the sequence X1, . . . , Xn is available, the interval can be data-randomized in the sense8

that the randomization can be determined by the data: the first n1 observations can be put in the first subsample and the9

remaining n2 observation in the second subsample. If the results of the individual trials have not been recorded, one must10

use randomness from outside the data to create a sequence X1, . . . , Xn of 0’s and 1’s such that
n

i=1 Xi = X . We will refer to11

the latter strategy as external randomization and will discuss these two settings separately.12

Decrouez and Hall (2014) left two questions open. The first is how the split sample interval performs in comparison13

to other randomized intervals, as Decrouez and Hall (2014) only compared the split sample interval to non-randomized14

confidence intervals. The second question is to what extent the randomization can affect the bounds of the interval. In the15

remainder of this note we answer these questions, discussing the impact of the random splitting on the confidence interval16

and comparing the split sample interval to alternative intervals. In Section 2 we describe a connection between split sample17

methods and adding discrete noise to the data. Section 3 is concerned with externally randomized intervals whereas we in18

Section 4 study data-randomized intervals. Various criticisms of randomized intervals are then discussed in Section 5.19

2. Random splitting and discrete noise20

A strategy for smoothing the distribution of the binomial random variable X is to base our inference on X + Y , where Y21

is a comparatively small random noise, using X + Y instead of X in the formula for our chosen confidence interval. Having22

a smoother distribution leads to a better normal approximation, which in turn reduces the coverage fluctuations of the23

interval. From a purely probabilistic perspective, the split sample method can be seen to be a special case of this strategy.24

Let Z be a random variable which, conditioned on X , follows a Hypergeometric(n, X, n1) distribution. Then it follows from25

(1) that26

X̃ = np̃ d
=

n
2n1

Z −
n

2n2
(X − Z),27

so that28

X̃ d
= X + Y with Y =

n
2n1

Z −
n

2n2
Z +

n1 − n2

2n2
X .29

The conditional distribution of Y when n = 11 is shown in Fig. 1.30

From the above distributional identity it is clear that the split sample method relies on the sufficient statistic X as well31

as an additional random variable Y , and that it therefore can be considered to amount to adding discrete noise to binomial32

data. We note however that the noise term Y is a deterministic function of the sequence X1, . . . , Xn. Conditioned on the33

sequence, it is therefore more natural to think of X̃ as resulting from splitting the sample rather than adding noise to X .34

3. Externally randomized confidence intervals35

3.1. Other externally randomized intervals36

We now consider the setting where only X has been recorded. Decrouez and Hall (2014) did not intend the split sample37

method to be used if only X is known, since it relies on the entire sample X1, . . . , Xn. It is however possible to apply their38

methodology also in this setting by constructing a random sequence X1, . . . , Xn of 0’s and 1’s such that
n

i=1 Xi = X . Wewill39

refer to this interval as the externally randomized split sample interval, to distinguish it from Decrouez and Hall’s original40

proposal. The externally randomized split sample interval uses a randomnoise term Y to improve the normal approximation.41

The next step is to ask whether there are other distributions for the noise that yield an even better approximation and42

thereby decrease the coverage oscillations even further. The answer is yes, for instance if X is replaced by Ẋ = X + Y whereQ243

Y ∼ U(−1/2, 1/2) independently of X . The normal approximations of X, X̃ and Ẋ are compared in Fig. 2. We will refer toQ344

the interval based on Ẋ as the U(−1/2, 1/2) interval.45

A randomized confidence interval that does not rely on a normal approximation is the Stevens (1950) interval. It belongs46

to an important class of confidence intervals for p, consisting of intervals (pL, pU) where the lower bound pL is such that47

ν1 ·

 n
X


pXL (1 − pL)n−X

+

n
k=X+1

n
k


pkL(1 − pL)n−k

= α/248



Download English Version:

https://daneshyari.com/en/article/7549607

Download Persian Version:

https://daneshyari.com/article/7549607

Daneshyari.com

https://daneshyari.com/en/article/7549607
https://daneshyari.com/article/7549607
https://daneshyari.com

