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a b s t r a c t

For a centered Gaussian random field X = {X(t), t ∈ RN
}, let T1 and T2 be two compact

sets in RN such that I = T1 ∩ T2 ≠ ∅ and denote by χ(Au(I)) the Euler characteristic of
the excursion set Au(I) = {t ∈ I : X(t) ≥ u}. We show that under certain smoothness
and regularity conditions, as u → ∞, the joint excursion probability P{supt∈T1 X(t) ≥

u, sups∈T2 X(s) ≥ u} can be approximated by the expected Euler characteristic E{χ(Au(I))}
such that the error is super-exponentially small.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction 1

Throughout this paper, let X = {X(t), t ∈ RN
} be a real-valued centered Gaussian random field. Let T1 and T2 be two 2

compact sets in RN and denote I = T1 ∩ T2 and T = T1 ∪ T2. The intersection I is always assumed nonempty, unless stated 3

otherwise. For a set D ⊂ RN , denote by χ(D) the Euler characteristic of D and by Au(D) = {t ∈ D : X(t) ≥ u} the excursion 4

set above level u ∈ R (cf. Adler and Taylor, 2007). 5

The excursion probability P{supt∈T X(t) ≥ u} has been extensively studied due to the significant value in both theory and 6

applications in many areas. We refer to monographs by Piterbarg (1996), Adler and Taylor (2007) and Azaïs and Wschebor 7

(2009) for both the history and recent developments on studying the excursion probability. As a natural extension, the Q2 8

joint excursion probability P{supt∈T1 X(t) ≥ u, sups∈T2 X(s) ≥ u} was also investigated recently, see Ladneva and Piterbarg 9

(2000), Piterbarg and Stamatovic (2005), Anshin (2006) and Debicki et al. (2010). In particular, motivated by the expected 10

Euler characteristic approximation (Adler and Taylor, 2007), and Cheng (2013) showed that for a unit-variance Gaussian 11

field X , assuming I = ∅ and certain smoothness and regularity conditions, there exists α > 0 such that as u → ∞, the 12

following approximation holds: 13

P

sup
t∈T1

X(t) ≥ u, sup
s∈T2

X(s) ≥ u


= E{χ(Au(T1) × Au(T2))} + o

exp


−αu2

−
u2

1 + ρ(T1, T2)


, (1.1) 14

where ρ(T1, T2) = supt∈T1,s∈T2 E{X(t)X(s)}. 15

Notice that, when applying the double-summethod, in order to avoid degeneracy, the existing results on joint excursion 16

probability, including (1.1), require T1 and T2 to be disjoint. Here, we consider the alternative case where T1 and T2 intersect, 17

i.e. I ≠ ∅. Our main result is that, for a certain class of smooth Gaussian fields, there exists α > 0 such that as u → ∞, the
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following approximation holds:1

P

sup
t∈T1

X(t) ≥ u, sup
s∈T2

X(s) ≥ u


= E{χ(Au(I))} + o

exp


−αu2

−
u2

2σ 2
I


, (1.2)2

where σ 2
I = supt∈I Var(X(t)). Note that the expectations in (1.1) and (1.2) can be computed explicitly via the Kac–Rice3

formula (cf. Adler and Taylor, 2007).4

2. Smooth Gaussian random fields with constant variance5

We first consider the case where X has constant variance, implying Var(X(t)) ≡ σ 2
I . When X(·) ∈ C2(RN) almost surely,6

we write ∂X(t)
∂ti

= Xi(t) and ∂2X(t)
∂ti∂tj

= Xij(t) and denote by ∇X(t) the vector (X1(t), . . . , XN(t))T . To make the field X a Morse7

function almost surely, which is required for showing the expected Euler characteristic approximation (cf. Adler and Taylor,8

2007), we need the following smoothness and regularity conditions.9

(C1). X(·) ∈ C2(T ) almost surely and there exist constants L, η, δ > 0 such that10

E(Xij(t) − Xij(s))2 ≤ L| log ∥t − s∥|−(1+η), ∀∥t − s∥ ≤ δ, i, j = 1, . . . ,N.11

(C2). For every t ∈ T , (X(t), ∇X(t), Xij(t), 1 ≤ i ≤ j ≤ N) is non-degenerate.12

Before stating the result, let us recall the term ‘‘locally convex’’ defined in Adler and Taylor (2007), p. 189. The rigorous13

definition is omitted here, however, it should be mentioned that a convex set is locally convex and locally convexity is aQ314

generalization of convexity.15

Theorem 2.1. Let X = {X(t), t ∈ RN
} be a constant-variance Gaussian random field satisfying (C1) and (C2). If all the sets T1,16

T2 and T are locally convex and piecewise smooth, then there exists α > 0 such that (1.2) holds as u → ∞.17

Proof. Since T = T1 ∪ T2, we can write18

P

sup
t∈T1

X(t) ≥ u, sup
s∈T2

X(s) ≥ u


= P

sup
t∈T1

X(t) ≥ u


+ P

sup
t∈T2

X(t) ≥ u


− P

sup
t∈T

X(t) ≥ u


. (2.1)19

Applying the expected Euler characteristic approximation (cf. Adler and Taylor, 2007, Theorem 14.3.3) to all three terms in20

the second line of (2.1), we obtain that there exists α > 0 such that21

P

sup
t∈T1

X(t) ≥ u, sup
s∈T2

X(s) ≥ u


= E{χ(Au(T1))} + E{χ(Au(T2))} − E{χ(Au(T ))} + o

exp


−αu2

−
u2

2σ 2
I


= E{χ(Au(T1)) + χ(Au(T2)) − χ(Au(T ))} + o


exp


−αu2

−
u2

2σ 2
I


.

(2.2)22

Note that Au(T ) = Au(T1 ∪ T2) = Au(T1) ∪ Au(T2). Therefore, by the additivity of Euler characteristic (i.e., χ(D1 ∪ D2) =23

χ(D1) + χ(D2) − χ(D1 ∩ D2) for any two suitable sets D1 and D2, see for example Adler and Taylor (2007), Chapter 6)24

χ(Au(T1)) + χ(Au(T2)) − χ(Au(T )) = χ(Au(T1) ∩ Au(T2)) = χ(Au(I)). (2.3)25

Plugging (2.3) into (2.2) gives the desired result. �26

The result in Theorem 2.1 can be intuitively seen by noting that for any distinct points t, s ∈ T , the joint probability27

P{X(t) ≥ u, X(s) ≥ u} is negligible or super-exponentially small when compared with E{χ(Au(I))} as u → ∞. Thus28

P{supt∈I X(t) ≥ u} makes the major contribution to the joint excursion probability P{supt∈T1 X(t) ≥ u, sups∈T2 X(s) ≥ u},29

and meanwhile, it can be approximated by the expected Euler characteristic E{χ(Au(I))}.30

Here, it is also valuable to compare the result in Theorem 2.1 with Pickands’ approximation, which is another common31

approximation for excursion probability (see for example Piterbarg, 1996). For simplicity, assume that X is stationary32

with covariance r(t) satisfying r(t) = 1 − ∥t∥β as ∥t∥ → 0, where β ∈ (0, 2] is some constant. Then, for any33

N-dimensional Jordan measurable set D ⊂ RN , there exists some function g independent of D such that P{supt∈D X(t) ≥34

u} = Vol(D)g(u)(1 + o(1)) as u → ∞. Applying this approximation to (2.1), we can approximate the joint excursion35

probability by [Vol(T1) + Vol(T2) − Vol(T )]g(u). But it becomes meaningless if Vol(T1) + Vol(T2) − Vol(T ) = 0 or the36

dimension of I is less than N . In contrast, this problem does not exists in Theorem 2.1 since the expected Euler characteristic37

approximation takes into account the geometry of all lower dimensional faces. This phenomenon may also promote us to38

find more accurate approximations for the excursion probability of non-smooth Gaussian fields.39
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