Model 3Gsc

pp. 1-5 (col. fig: NIL)

Statistics and Probability Letters xx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Rate of Poisson approximation for nearest neighbor counts in large-dimensional Poisson point processes

Q1 Yi-Ching Yao

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

ARTICLE INFO

Article history: Received 29 October 2013 Received in revised form 22 May 2014 Accepted 27 May 2014 Available online xxxx

MSC: primary 60D05 secondary 60G55

Keywords: Typical point Typical cell Voronoi tessellation Total variation distance

ABSTRACT

Consider two independent homogeneous Poisson point processes Π of intensity λ and Π' of intensity λ' in *d*-dimensional Euclidean space. Let $q_{k,d}$, $k = 0, 1, \ldots$, be the fraction of Π -points which are the nearest Π -neighbor of precisely $k \Pi'$ -points. It is known that as $d \to \infty$, the $q_{k,d}$ converge to the Poisson probabilities $e^{-\lambda'/\lambda} (\lambda'/\lambda)^k / k!$, $k = 0, 1, \ldots$. We derive the (sharp) rate of convergence $d^{-1/2} (4/3\sqrt{3})^d$, which is related to the asymptotic behavior of the variance of the volume of the typical cell of the Poisson–Voronoi tessellation generated by Π . An extension to the case involving more than two independent Poisson point processes is also considered.

© 2014 Published by Elsevier B.V.

1

2

3 4 5

> 6 7

8

9

10

11

12

13

15

In this note, we consider two independent homogeneous Poisson point processes Π of intensity λ and Π' of intensity λ' in *d*-dimensional Euclidean space \mathbb{R}^d . Let $p_{k,d}$, k = 0, 1, ..., be the fraction of Π -points which are the nearest Π -neighbor of precisely *k* other Π -points, and $q_{k,d}$, k = 0, 1, ..., the fraction of Π -points which are the nearest Π -neighbor of precisely $k \Pi'$ -points. Here for given $\mathbf{v} \in \mathbb{R}^d$, a point $Q \in \Pi$ is called the nearest Π -neighbor of \mathbf{v} if $\|Q - \mathbf{v}\|_d < \|\mathbf{u} - \mathbf{v}\|_d$ for all $\mathbf{u} \in \Pi \setminus \{\mathbf{Q}\}$ where $\|\cdot\|_d$ denotes the Euclidean norm in \mathbb{R}^d . By ergodic-type arguments, $p_{k,d}$ and $q_{k,d}$ are well defined. In their Theorems 5 and 10, Newman et al. (1983) proved that

$$\lim_{d \to \infty} p_{k,d} = e^{-1}/k! \quad \text{and} \quad \lim_{d \to \infty} q_{k,d} = e^{-\rho} \rho^k/k!,\tag{1}$$

where $\rho = \lambda' / \lambda$. (See also Newman and Rinott, 1985.)

The limit results in (1) can also be formulated in terms of a "typical point" Q of Π , to be translated so that $Q = \mathbf{0} = (0, ..., 0)$, the origin in \mathbb{R}^d . We will refer to $\mathbf{0}$ as the typical point of Π . (Note that since Π is a Poisson point process, its Palm distribution at $\mathbf{0}$ is equivalent to the distribution of Π with an independently added point at $\mathbf{0}$; see e.g. Daley and Vere-Jones (2007, Proposition 13.1.VII).) Let M_d be the number of Π -points which have $\mathbf{0}$ as their nearest Π -neighbor, and $N_{\rho,d}$ the number of Π' -points which have $\mathbf{0}$ as their nearest Π -neighbor, i.e.

$$M_{d} = \#\{\mathbf{u} \in \Pi : \|\mathbf{u} - \mathbf{0}\|_{d} < \|\mathbf{u} - \mathbf{v}\|_{d} \text{ for all } \mathbf{v} \in \Pi \setminus \{\mathbf{u}\}\},$$

$$N_{\rho,d} = \#\{\mathbf{u}' \in \Pi' : \|\mathbf{u}' - \mathbf{0}\|_{d} < \|\mathbf{u}' - \mathbf{v}\|_{d} \text{ for all } \mathbf{v} \in \Pi\}$$

$$= \#(\Pi' \cap C_{d}),$$
(2)

E-mail address: yao@stat.sinica.edu.tw.

http://dx.doi.org/10.1016/j.spl.2014.05.014 0167-7152/© 2014 Published by Elsevier B.V.

STAPRO: 6980

ARTICLE IN PRESS

Y.-C. Yao / Statistics and Probability Letters xx (xxxx) xxx-xxx

where

2

9

17

18

38

 $C_d = \{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{0}\|_d < \|\mathbf{x} - \mathbf{u}\|_d \text{ for all } \mathbf{u} \in \Pi \},\$

the (typical) Voronoi cell centered at **0** generated by $\Pi \cup \{\mathbf{0}\}$ (cf. Okabe et al., 2000). Note that $\mathcal{L}(M_d)$, the distribution of M_d , is independent of λ and λ' , and $\mathcal{L}(N_{\rho,d})$ depends on λ and λ' only through $\rho = \lambda'/\lambda$. Then (1) is equivalent to the limit results that as $d \to \infty$, M_d and $N_{\rho,d}$ converge in distribution to Po(1) and $Po(\rho)$, respectively, where $Po(\rho)$ denotes the Poisson distribution with mean ρ .

In the present note, we derive the rate of convergence for $N_{\rho,d}$ as stated below.

Theorem 1. For any given $\rho_0 > 0$, there exists a constant $c_1(\rho_0) > 0$ such that for all $1 \le d < \infty$ and $0 < \rho \le \rho_0$,

$$c_{1}(\rho_{0})\rho^{2}\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^{d} \leq d_{TV}(\mathcal{L}(N_{\rho,d}), Po(\rho)) \leq c_{2}\rho(1 - e^{-\rho})\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^{d},\tag{4}$$

where d_{TV} denotes the total variation distance and $c_2 > 0$ is a constant (independent of ρ_0).

Proof. Without loss of generality, assume $\lambda = 1$, so that $\rho = \lambda'/\lambda = \lambda'$. Note that $N_{\rho,d}$ has a mixed Poisson distribution. By (2) and (3), the conditional distribution of $N_{\rho,d}$ given $\mu_d(C_d) = v$ is $Po(\lambda'v) = Po(\rho v)$ where $\mu_d(S)$ denotes the d-dimensional Lebesgue measure (volume) of measurable $S \subset \mathbb{R}^d$. Also, $\mathbb{E}[\mu_d(C_d)] = 1/\lambda = 1$, and by Alishahi and Sharifitabar (2008, Theorem 3.1),

¹⁵
$$\operatorname{var}(\mu_d(C_d)) \leq \frac{c_2}{\lambda^2} \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d = c_2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d \quad \text{for all } 1 \leq d < \infty,$$

for some constant $c_2 > 0$. By Barbour et al. (1992, Theorem 1.C(ii)), we have

$$d_{TV}(\mathcal{L}(N_{\rho,d}), Po(\rho)) \leq \rho^{-1}(1 - e^{-\rho})\operatorname{var}(\rho\mu_d(C_d))$$
$$\leq c_2\rho(1 - e^{-\rho})\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^d,$$

To derive the lower bound, fix a (large) u > 0 and consider the ball of volume u centered at **0**, denoted by $B = B_{u,d}$. Applying Lemma 1 below with $\alpha_1 = \rho \mu_d(C_d \cap B) \le \rho u$, $\alpha_2 = \rho \mu_d(C_d \setminus B)$, $\beta_1 = E[\alpha_1] = \rho E[\mu_d(C_d \cap B)] \le \rho u$, $\beta_2 = E[\alpha_2] = \rho E[\mu_d(C_d \setminus B)] = \rho - \beta_1$, we have

$$\geq e + n_1(\rho u) \operatorname{vd}(\rho \mu_d(C_d + B))$$

$$\geq e^{-\rho}h_1(\rho u)\rho^2 c \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^a$$

where the last two inequalities follow from Lemma 2 (with $S_1 = B$ and $S_2 = \mathbb{R}^d \setminus B$) and Lemma 3 (with $u \ge u_0$ and c > 0and $u_0 < \infty$ appearing in the statement of Lemma 3). Noting that h_1 is nonincreasing, we have for all $1 \le d < \infty$ and $0 < \rho \le \rho_0$,

³³
$$d_{\text{TV}}(\mathcal{L}(N_{\rho,d}), Po(\rho)) \ge ce^{-\rho_0}h_1(\rho_0 u)\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d$$
³⁴
$$= c_1(\rho_0)\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}}\right)^d,$$

where $c_1(\rho_0) = ce^{-\rho_0}h_1(\rho_0 u)$. The proof is complete. \Box

Remark 1. The lower and upper bounds in (4) may be expressed as

$$\inf_{1 \le d < \infty, 0 < \rho \le \rho_0} d_{TV}(\mathcal{L}(N_{\rho,d}), Po(\rho)) \middle/ \left[\rho^2 \frac{1}{\sqrt{d}} \left(\frac{4}{3\sqrt{3}} \right)^d \right] > 0,$$

$$\sup_{1\leq d<\infty,\rho>0} d_{TV}(\mathcal{L}(N_{\rho,d}), Po(\rho)) \middle/ \left[\rho(1-e^{-\rho})\frac{1}{\sqrt{d}}\left(\frac{4}{3\sqrt{3}}\right)^{d}\right] < \infty.$$

Please cite this article in press as: Yao, Y.-C., Rate of Poisson approximation for nearest neighbor counts in large-dimensional Poisson point processes. Statistics and Probability Letters (2014), http://dx.doi.org/10.1016/j.spl.2014.05.014

2

(3)

Download English Version:

https://daneshyari.com/en/article/7549672

Download Persian Version:

https://daneshyari.com/article/7549672

Daneshyari.com