Model 3Gsc

pp. 1-5 (col. fig: NIL)

Statistics and Probability Letters xx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

On the maximum of a perturbed random walk

o1 Alexander Iksanov^{a,*}, Andrey Pilipenko^b

^a Faculty of Cybernetics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine ^b Institute of Mathematics. National Academy of Sciences of Ukraine. Kviv. Ukraine

ARTICLE INFO

Article history: Received 26 February 2014 Received in revised form 2 May 2014 Accepted 29 May 2014 Available online xxxx

Keywords: Functional limit theorem Perturbed random walk

1. Introduction and results

ABSTRACT

Let $(\xi_1, \eta_1), (\xi_2, \eta_2), \ldots$ be a sequence of i.i.d. two-dimensional random vectors. We prove a functional limit theorem for the maximum of a perturbed random walk $\max_{0 \le k \le n} (\xi_1 + \xi_2)$ $\cdots + \xi_k + \eta_{k+1}$) in a situation where its asymptotics is affected by both $\max_{0 \le k \le n} (\xi_1 + \cdots + \xi_k)$ ξ_k) and max_{1 \le k \le n} η_k to a comparable extent. This solves an open problem that we learned from the paper "Renorming divergent perpetuities" by P. Hitczenko and J. Wesołowski.

© 2014 Published by Elsevier B.V.

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

(1)

Let $(\xi_k, \eta_k)_{k \in \mathbb{N}}$ be a sequence of i.i.d. two-dimensional random vectors with generic copy (ξ, η) . Let $(S_n)_{n \in \mathbb{N}_0}$ be the zerodelayed random walk with increments ξ_k for $k \in \mathbb{N}$, i.e.,

 $S_0 := 0$ and $S_n := \xi_1 + \cdots + \xi_n$, $n \in \mathbb{N}$

Assuming that

 $\mathbb{E}\xi = 0$ and $v^2 := \operatorname{Var} \xi < \infty$.

Hitczenko and Wesołowski in Hitczenko and Wesołowski (2011) investigated weak convergence of the one-dimensional distributions of $a_n \max_{0 \le k \le n} (S_k + \eta_{k+1})$ as $n \to \infty$ for appropriate deterministic sequences (a_n) . More precisely, in the proof of Theorem 3 in Hitczenko and Wesołowski (2011) it is shown that (I) whenever $\max_{0 \le k \le n} S_k$ dominates $\max_{1 \le k \le n+1} \eta_k$ the limit law of $a_n \max_{0 \le k \le n} (S_k + \eta_{k+1})$ coincides with the limit law of $a_n \max_{0 \le k \le n} S_k$ which is the law of |B(1)| where $(B(t))_{t \ge 0}$ is a Brownian motion; and that (II) whenever $\max_{1 \le k \le n+1} \eta_k$ dominates $\max_{0 \le k \le n} S_k$ the limit law coincides with that of $a_n \max_{1 \le k \le n+1} \eta_k$ which is a Fréchet law under a regular variation assumption.

If in addition to (1) condition

$$\mathbb{P}\{\eta > x\} \sim cx^{-2}, \quad x \to \infty$$
⁽²⁾

holds for some c > 0, then contributions of $\max_{0 \le k \le n} S_k$ and $\max_{1 \le k \le n+1} \eta_k$ to the asymptotic behavior of $\max_{0 \le k \le n} (S_k + 1)$ η_{k+1}) are comparable. Hitczenko and Wesołowski conjectured (see Remark on p. 889 in Hitczenko and Wesołowski (2011)) that whenever conditions (1) and (2) hold, and ξ and η are independent, the limit random variable is $\theta + vB(1)$, where θ is independent of B(1) and has a Fréchet distribution with parameters 2 and c. Under conditions (1) and (2) (not assuming that ξ and η are independent) we prove a functional limit result for $n^{-1/2} \max_{0 \le k \le \lfloor n \rfloor} (S_k + \eta_{k+1})$ which implies that the conjecture is erroneous (see Remark 1.2).

Corresponding author.

http://dx.doi.org/10.1016/j.spl.2014.05.026 0167-7152/© 2014 Published by Elsevier B.V.

Please cite this article in press as: Iksanov, A., Pilipenko, A., On the maximum of a perturbed random walk. Statistics and Probability Letters (2014), http://dx.doi.org/10.1016/j.spl.2014.05.026

E-mail addresses: iksan@univ.kiev.ua, iksan72@mail.ru (A. Iksanov), pilipenko.ay@yandex.ua (A. Pilipenko).

2

2

3

4

5

6

9

18

20

24 25

26

27

29

31

35

37

STAPRO: 6992

A. Iksanov, A. Pilipenko / Statistics and Probability Letters xx (xxxx) xxx-xxx

Denote by $D := D[0, \infty)$ the Skorokhod space of real-valued right-continuous functions which are defined on $[0, \infty)$ and have finite limits from the left at each positive point. Throughout the note we assume that D is equipped with the J_1 topology. For c > 0 defined in (2), let $N^{(c)} := \sum_{k} \varepsilon_{(t_k, j_k)}$ be a Poisson random measure on $[0, \infty) \times (0, \infty]$ with mean measure $\mathbb{LEB} \times \mu_c$, where $\varepsilon_{(t,x)}$ is the probability measure concentrated at $(t,x) \subset [0,\infty) \times (0,\infty]$, \mathbb{LEB} is the Lebesgue measure on $[0, \infty)$, and μ_c is a measure on $(0, \infty]$ defined by

 $\mu_c((x,\infty]) = cx^{-2}, x > 0.$

Also, let $(B(t))_{t>0}$ be a Brownian motion independent of $N^{(c)}$. 7

Theorem 1.1. Suppose (1) and (2). Then 8

$$n^{-1/2} \max_{0 \le k \le [n]} (S_k + \eta_{k+1}) \Rightarrow \sup_{t_k \le \cdots} (vB(t_k) + j_k) \quad \text{as } n \to \infty$$

in D. 10

Remark 1.2. Observe that $\mathbb{P}{\sup_{t_k \le 1} (vB(t_k) + j_k) \ge 0} = 1$, whereas $\mathbb{P}{\theta + vB(1) < 0} > 0$. This disproves the conjecture 11 stated in Hitczenko and Wesołowski (2011). We note in passing that the law of $\sup_{t_k < 1} (vB(t_k) + j_k)$ is different from that of 12

$$\theta + v|B(1)| \stackrel{a}{=} \sup_{t_k < 1} j_k + v \, \sup_{t < 1} B(t), \text{ for } \sup_{t_k < 1} (vB(t_k) + j_k) < \sup_{t_k < 1} j_k + v \, \sup_{t_k < 1} B(t) \text{ a.s.}$$

After the present note was ready for submission we learned that a version of Theorem 1.1, with ξ and η being indepen-14 dent, has also been proved, independently and at the same time, in Wang (2014) via a more complicated argument. 15

Let $C := C[0, \infty)$ be the set of continuous functions defined on $[0, \infty)$. Denote by M_n the set of Radon point measures ν 16 on $[0,\infty) \times (-\infty,\infty]$ which satisfy 17

(3)

(4)

(5)

 $\nu([0,T] \times \{(-\infty,-\delta] \cup [\delta,\infty]\}) < \infty$

for all $\delta > 0$ and all T > 0. The M_p is endowed with the vague topology. Define the functional F from $D \times M_p$ to D by 19

$$F(f, v)(t) := \begin{cases} \sup_{k:\tau_k \le t} (f(\tau_k) + y_k), & \text{if } \tau_k \le t \text{ for some } k, \\ f(0), & \text{otherwise,} \end{cases}$$

where $\nu = \sum_{k} \varepsilon_{(\tau_k, y_k)}$. Assumption (3) ensures that $F(f, \nu) \in D$. If (3) does not hold, $F(f, \nu)$ may lost right-continuity. 21

Theorem 1.3. For $n \in \mathbb{N}$, let $f_n \in D$ and $v_n \in M_p$. Assume that $f_0 \in C$ and 22

• $v_0([0,\infty) \times (-\infty,0]) = 0$ and $v_0(\{0\} \times (-\infty,+\infty]) = 0$, 23

• $v_0((a, b) \times (0, \infty]) \ge 1$ for all positive a and b such that a < b, • $v_0 = \sum_k \varepsilon_{(\tau_k^{(0)}, y_{\nu}^{(0)})}$ does not have clustered jumps, i.e., $\tau_k^{(0)} \neq \tau_j^{(0)}$ for $k \neq j$.

If

$$\lim_{n\to\infty}f_n=f_0\quad in\ D$$

and 28

then 30

$$\lim F(f_n, \nu_n) = F(f_0, \nu_0)$$

in D. 32

Remark 1.4. The assumption $v_0((a, b) \times (0, \infty]) \ge 1$ for all positive a < b is necessary. Indeed, set $v_n := \varepsilon_{(1,n^{-1})}$ for $n \in \mathbb{N}$, 33 $v_0 := 0$ and $f_n(t) := t$ for $t \ge 0$ and $n \in \mathbb{N}_0$. Then, as $n \to \infty$, 34

$$F(f_n, \nu_n)(t) = (1 + n^{-1})\mathbb{1}_{[1,\infty)}(t) \to \mathbb{1}_{[1,\infty)}(t) \neq F(f_0, \nu_0)(t) = 0$$

The assumption $v_0((a, b) \times (0, \infty]) \ge 1$ for all positive a < b can be omitted if one modifies the definition of *F* as follows: 36

$$F(f, \nu)(t) := \sup_{k:\tau_k \leq t} (f(\tau_k) + y_k) \vee \sup_{s \leq t} f(s).$$

Remark 1.5. Let a > 0 and $(T_n)_{n \in \mathbb{N}_0}$ be a random sequence independent of $(\eta_k)_{k \in \mathbb{N}}$. Further, denote by X a random process 38 with a.s. continuous paths which is independent of (t_k^*, j_k^*) the atoms of a Poisson random measure on $[0, \infty) \times (0, \infty]$ with 39 mean measure $\mathbb{LEB} \times \mu_{c,a}$, where $\mu_{c,a}$ is a measure on $(0, \infty]$ defined by $\mu_{c,a}(x, \infty]) = cx^{-a}, x > 0$. Whenever (2) holds

Please cite this article in press as: Iksanov, A., Pilipenko, A., On the maximum of a perturbed random walk. Statistics and Probability Letters (2014), http://dx.doi.org/10.1016/j.spl.2014.05.026

$$\lim_{n \to \infty} F(f_n, \nu_n) = F(f_0, \nu_0)$$
(6)

 $\lim_{n\to\infty}\mathbb{1}_{[0,\infty)\times(0,\infty]}\nu_n=\nu_0$

Download English Version:

https://daneshyari.com/en/article/7549693

Download Persian Version:

https://daneshyari.com/article/7549693

Daneshyari.com