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a b s t r a c t

A model for simulation of a strictly sub-Gaussian random field is offered. An estimate for
the rate of convergence of the model to the field is found.
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1. Introduction 1

Q2
Numerical simulation of random processes is now quite a wide area. There exist many various methods for simulation 2

of different types of stochastic processes (see e.g. Ogorodnikov and Prigarin, 1996; Ripley, 1987). Q3 3

However, there is one substantial problem with many of these methods: as a rule, it is hard to assess the quality of 4

approximation of a process by itsmodel in termsof ‘‘distance’’ betweenpaths of the process and the corresponding simulated 5

paths. This is true, for instance, for spectral methods of simulation. 6

In this connection a problem of creating models which are free from this drawback deserves much interest. There exists 7

an approach for building such models which is called simulation with given accuracy and reliability. Simulation with given 8

accuracy and reliability is described in Kozachenko et al. (2007). This kind of simulation is considered, for example, also 9

in Kozachenko and Pogoriliak (2011) and Kozachenko et al. (2005). 10

The essence of simulation with given accuracy and reliability can be described in the following way. A model (approxi- 11

mation) X̂(t) of a random process X(t) is built, this model depends on certain parameters. Then the rate of convergence of 12

the model to the process is described by a statement of the following type: if numbers ε (accuracy) and δ (1 − δ is called 13

reliability) are given and the parameters of the model satisfy certain restrictions (for instance, they are not less than certain 14

lower bounds) then 15

P{∥X − X̂∥ > ε} ≤ δ. (1) 16

There exist many such results for the cases when the norm in (1) is the Lp norm or the uniform norm. 17
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We study simulation of a strictly sub-Gaussian field (the notion of a strictly sub-Gaussian process is a generalization of1

the notion of a Gaussian process). We start from an expansion2

X(t) =

n−1
i=1

∞
k=1

(dik(t)ξik + eik(t)ζik) +

n−1
i=1

ri0(t)ηi0,3

of a field X(t), where ξik, ζik, ηi0 are random variables, dik(t), eik(t), ri0(t) are functions which depend on X(t) and a certain4

orthonormal basis. Our model is the partial sum5

X̂(t) = X̂(k1, k2, . . . , kn−1, t) =

n−1
i=1

ki−1
k=1

(dik(t)ξik + eik(t)ζik) +

n−1
i=1

ri0(t)ηi0.6

We characterize the rate of convergence of X̂(t) to X(t) in the following way (our approach is very close to simulation with7

given accuracy and reliability): if ε > 0 is given and the parameters k1, k2, . . . , kn−1 are big enough then8

E sup
t∈T

|X(t) − X̂(t)| ≤ ε. (2)9

We can interpret (2) as follows: the average distance in the uniform norm between a path of the process and the corre-10

sponding path of the model is small enough. So simulated paths will be close to the corresponding paths of X(t).11

If the field X(t) is Gaussian then the model X̂(t) can be used for computer simulation of X(t). One of advantages of our12

model is the fact that the model of a Gaussian field is a Gaussian field. Besides, our method of simulation is very simple.13

2. Auxiliary facts14

A random variable ξ is called sub-Gaussian if there exists such a constant a ≥ 0 that E exp{λξ} ≤ exp{λ2a2/2} for all15

λ ∈ R and strictly sub-Gaussian if, in addition, inf{a ≥ 0 : E exp{λξ} ≤ exp{λ2a2/2}, λ ∈ R} = (Eξ 2)1/2. The class of all16

sub-Gaussian random variables on a standard probability space {Ω, B, P} is a Banach space with respect to the norm17

τ(ξ) = inf{a ≥ 0 : E exp{λξ} ≤ exp{λ2a2/2}, λ ∈ R}.18

Two examples of sub-Gaussian random variables are a centered Gaussian random variable and a random variable uniformly19

distributed on [−b, b].20

A family ∆ of sub-Gaussian random variables is called strictly sub-Gaussian if for any finite or countable set I of random21

variables ξi ∈ ∆ and for any λi ∈ R22

τ 2


i∈I

λiξi


= E


i∈I

λiξi

2

.23

A stochastic process X = {X(t), t ∈ T} is called sub-Gaussian if all the random variables X(t), t ∈ T, are sub-Gaussian.24

We call a stochastic process X = {X(t), t ∈ T} strictly sub-Gaussian if the family {X(t), t ∈ T} is strictly sub-Gaussian. Any25

centered Gaussian process is strictly sub-Gaussian.26

Details about sub-Gaussian random variables and processes can be found in Buldygin and Kozachenko (2000).27

We consider a partition of an interval [b1, bn] ⊂ R: b1 < b2 < · · · < bn and an orthonormal basis F in L2([b1, bn])28

defined as29

F =

n−1
i=1

Fi, (3)30

where31

Fi =


1

√
2∆i

,
1

√
∆i

cos
kπ(x − b′

i)

∆i
,

1
√

∆i
sin

kπ(x − b′

i)

∆i
, k = 1, 2, . . .


,32

∆i = (bi+1 − bi)/2, b′

i = (bi+1 + bi)/2.33

We will need the following simple fact (which is a corollary from Theorem 1.1 in Kozachenko et al. (2011)).34

Theorem 1. A centered second-order random field X = {X(t), t ∈ T}, T ⊂ Rm, with the correlation function35

R(t, s) =

 bn

b1
u(t, y)u(s, y)dy, (4)36

where u(t, ·) ∈ L2([b1, bn]), can be represented as a mean square convergent series37

X(t) =

n−1
i=1

∞
k=1

(dik(t)ξik + eik(t)ζik) +

n−1
i=1

ri0(t)ηi0, (5)38
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