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a b s t r a c t

In this paper, we show that a two-component normal mixture model provides a good
approximation to the logistic distribution. This model is an improvement over using the
normal distribution and is comparable with using the t-distribution as approximating
distributions. The result from using the mixture model is exemplified by finding an
approximative analytic expression for the covariance matrix of logistic regression with
normally distributed random regressors.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

If a logistic function, F(·), and its derivative, f (·), are functions of random variables, then it is generally not possible to
find analytic expressions for the moments of these two functions unless some heavy restrictions are applied. In this paper
we attempt to solve this problem by substituting the logistic function with some other function that closely resembles the
logistic function. More specifically, this paper examines how well F(·) and f (·) are approximated by a normal distribution,
a t-distribution and a normal mixture distribution. Using the mixture model, the resulting approximation is then applied to
approximate the asymptotic covariance matrix in logistic regression having normally distributed regressors.

2. Approximation using a normal distribution or a t-distribution

Consider a standard logistic random variable X withmean zero and varianceπ 2/3. Its cumulative distribution function is
F(x) = [1+ exp(−x)]−1 and its density is f (x) = F(x) [1 − F(x)]. The logistic distribution is a member of the location-scale
family and although not belonging to the exponential family of distributions, it is well known that the logistic distribution
is very similar to the normal distribution. Not only are the shapes of both distributions determined by location and scale
parameters, but both distributions are also bell shaped. However, the logistic distribution has heavier tails than the normal
distribution. More specifically, the excess kurtosis of the logistic distribution is 1.2. Still, because of the similarities it is
appealing to approximate a logistic distribution using a normal distribution. We denote the distribution function and the
density of a normal distribution having mean zero and standard deviation σ by G(x) and g(x) respectively.

Mudholkar and George (1978) propose a competing approximation. Because of the larger tails of Student’s t-distribution
compared with the normal distribution, they suggest using a t-distribution as an approximation of the logistic distribution
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Table 1
Minimum approximation error when approximating a logistic distribution with a normal distribution, a t-distribution or a
normal mixture model.

Min. error Value(s) minimizing error

σ

∥F(x) − G(x)∥2 2.31 1.699
∥F(x) − G(x)∥∞ 0.95 1.702
∥f (x) − g(x)∥2 2.07 1.630
∥f (x) − g(x)∥∞ 1.15 1.618

ν s

∥F(x) − T (x)∥2 0.19 7.031 1.549
∥F(x) − T (x)∥∞ 0.06 6.974 1.548
∥f (x) − t(x)∥2 0.15 6.424 1.540
∥f (x) − t(x)∥∞ 0.07 6.400 1.539

v ω1 ω2

∥F(x) − H(x)∥2 0.15 0.567 1.304 2.300
∥F(x) − H(x)∥∞ 0.07 0.505 1.247 2.227
∥f (x) − h(x)∥2 0.17 0.478 1.243 2.168
∥f (x) − h(x)∥∞ 0.08 0.460 1.231 2.143

Note: For the univariate optimization, a mixture of golden section search and parabolic interpolation is used. For the
multivariate optimization the Nelder–Meadmethod is applied (Nelder andMead, 1965). Because the Nelder–Meadmethod
may not converge at a global optimum (McKinnon, 1998), we increase robustness by restarting the optimization 1000 times
with uniformly distributed random vectors as start values. All numerical calculations are done using R version 2.15.1.

function. However, one drawback is that the expressions of the distribution function and the density of the t-distribution
are more complicated than those of the normal distribution. In the following, let T (x) denote the distribution function and
t(x) the density of a central t-distributed random variable with ν degrees of freedom and scale parameter s.

To measure how well the approximations perform we consider two measures of accuracy: (i) the maximum absolute
deviations, ∥ · ∥∞, or (ii), the square root of the average of all squared deviations, ∥ · ∥2. Only a few analytic results exist
in the literature, but Haley (1952) shows that ∥F(x) − G(x)∥∞ is minimized at σ ≈ 1.702. Other results, e.g., Mudholkar
and George (1978), match the moments, which yield some degree of similarity between distributions but without actually
addressing (i) or (ii). In this paper we rely on numerical optimization to minimize (i) or (ii). See the comments to Table 1
regarding the optimization routine.

According to the results in Table 1, the normal distribution provides a decent approximation of the logistic distribution.
The maximum absolute error between the normal distribution and the logistic distribution is minimized to 0.0095 for the
distribution function and 0.0115 for the density. Further, the minimum square root of the average absolute error is 0.0231
for the distribution function and 0.0207 for the density. However, there are two important qualifications concerning the
conclusion of the approximation. First, what is good depends on the application. Second, if another function improves the
approximation and is just as easily implemented, there is no reason not to use that function.

As can be seen in Table 1, using the t-distribution leads to a large decrease of the approximation errors. Depending on
which error and function are studied, the errors using the t-distribution are between 12 and 16 times smaller than the
errors when using the normal distribution. In fact, the maximum absolute error between the t-distribution and the logistic
distribution is minimized to 0.0006 for the distribution function and 0.0007, for the density, while theminimum square root
of the average absolute error are 0.0019 and 0.0017 for the distribution and density respectively. Clearly, the t-distribution is
far superior in minimizing the approximation errors. On the other hand, it still suffers from having complicated expressions
for the distribution and density functions.

3. The normal mixture approximation

The normal mixture model is widely used when considering occurrences of rare events (e.g., heavy-tailed probability
models). Intuitively, the normal mixture distribution should therefore be able to take into account the heavier tails of the
logistic distribution. For this purpose, we suggest as approximation the following two-component normal mixture model:

H(x) = υH1(x) + (1 − υ)H2(x), −∞ < x < ∞, 0 < ω1, ≤ ω2 < ∞, 0 < υ < 1, (1)
h(x) = υh1(x) + (1 − υ)h2(x), −∞ < x < ∞, 0 < ω1 ≤ ω2 < ∞, 0 < υ < 1, (2)

whereH1(x),H2(x), h1(x) and h2(x) are the distribution functions anddensity functions of twonormal distributionswith zero
means and standard deviations ω1 and ω2. Again, we seek to minimize (i) and (ii), nowwith respect to the three parameters
that govern the shape ofH(x) and h(x). Note that amixturemodel may approximate any function arbitrarily well depending
on the number of components (Sorenson and Aspach, 1971). Still, a two-component mixture model provides a balance
between having a parsimonious model and providing a good approximation.

The results in Table 1 show that the normal mixture model works well as an approximation. Regarding the maximum
absolute error, the approximation is roughly on par with the t-distribution, with 0.0007 and 0.0008 being the maximum



Download	English	Version:

https://daneshyari.com/en/article/7549803

Download	Persian	Version:

https://daneshyari.com/article/7549803

Daneshyari.com

https://daneshyari.com/en/article/7549803
https://daneshyari.com/article/7549803
https://daneshyari.com/

