ARTICLE IN PRESS

Available online at www.sciencedirect.com

stochastic processes and their applications

Stochastic Processes and their Applications [(1111) 111-111

www.elsevier.com/locate/spa

Representations of max-stable processes via exponential tilting

Enkelejd Hashorva

Department of Actuarial Science, University of Lausanne, Chamberonne, 1015 Lausanne, Switzerland

Received 25 May 2016; received in revised form 11 October 2017; accepted 21 October 2017 Available online xxxx

Abstract

The recent contribution (Dieker and Mikosch, 2015) obtained representations of max-stable stationary Brown–Resnick process $\zeta_Z(t), t \in \mathbb{R}^d$ with spectral process Z being Gaussian. With motivations from Dieker and Mikosch (2015) we derive for general Z, representations for ζ_Z via exponential tilting of Z. Our findings concern *Dieker–Mikosch representations* of max-stable processes, two-sided extensions of stationary max-stable processes, inf-argmax representation of max-stable distributions, and new formulas for generalised Pickands constants. Our applications include conditions for the stationarity of ζ_Z , a characterisation of Gaussian distributions and an alternative proof of Kabluchko's characterisation of Gaussian processes with stationary increments.

© 2017 Elsevier B.V. All rights reserved.

MSC: primary 60G15; secondary 60G70

Keywords: Max-stable process; Spectral tail process; Brown–Resnick stationary; Dieker–Mikosch representation; Inf-argmax representation; Pickands constants; Tilt-shift formula; Extremal index

1. Introduction

A random process $\zeta(t), t \in \mathcal{T}$ is max-stable if all its finite dimensional distributions (fidi's) are max-stable. For simplicity we shall assume hereafter that $\zeta(t)$ has unit Gumbel distribution $e^{-e^{-x}}, x \in \mathbb{R}$ for all $t \in \mathcal{T}$ and shall consider $\mathcal{T} = \mathbb{R}^d$ or $\mathcal{T} = \mathbb{Z}^d, d \ge 1$. In view of [31] any stochastically continuous max-stable process $\zeta(t), t \in \mathcal{T}$ satisfies (below $\stackrel{fdd}{=}$ means equality of

https://doi.org/10.1016/j.spa.2017.10.003

0304-4149/© 2017 Elsevier B.V. All rights reserved.

E-mail address: Enkelejd.Hashorva@unil.ch.

Please cite this article in press as: E. Hashorva, Representations of max-stable processes via exponential tilting, Stochastic Processes and their Applications (2017), https://doi.org/10.1016/j.spa.2017.10.003.

ARTICLE IN PRESS

E. Hashorva / Stochastic Processes and their Applications I (IIII)

all fidi's)

$$\zeta \stackrel{fdd}{=} \zeta_Z,$$

with

$$\zeta_Z(t) = \max_{i>1} \left(P_i + Z_i(t) \right), \quad t \in \mathcal{T},$$
(1.1)

where $Z(t), t \in \mathcal{T}$ is a random process taking values in $[-\infty, \infty)$ with $\mathbb{E}\{e^{Z(t)}\} = 1, t \in \mathcal{T}$ and $\Pi = \sum_{i=1}^{\infty} \varepsilon_{P_i}$ is a Poisson point process (PPP) on \mathbb{R} with intensity $e^{-x} dx$. Further, Z_i 's are independent copies of Z being also independent of Π ; see for more details [21,37,41,48,52,55,62,63,67,68,71].

We shall refer to ζ_Z as the *associated max-stable* process of Z; commonly Z is referred to as the *spectral process*. For convenience, we shall write Z as

$$Z(t) = B(t) - \ln \mathbb{E}\left\{e^{B(t)}\right\}, \quad t \in \mathcal{T},$$
(1.2)

with $B(t), t \in \mathcal{T}$ a random process satisfying $\mathbb{E}\{e^{B(t)}\} < \infty, t \in \mathcal{T}$. Consequently, $\mathbb{E}\{e^{Z(t)}\} = 1, t \in \mathcal{T}$ implying that the marginal distribution functions (df's) of ζ_Z are unit Gumbel.

One canonical instance is the classical Brown–Resnick construction with *B* being a centred Gaussian process with covariance function *r* and thus $2 \ln \mathbb{E}\{e^{B(t)}\} = r(t, t) =: \sigma^2(t), t \in \mathcal{T}$. In view of [39] the law of ζ_Z is determined by the incremental variance function $\gamma(s, t) = Var(B(t) - B(s)), s, t \in \mathcal{T}$. This fact can be shown by utilising the *tilted spectral process* $\Xi_h Z, h \in \mathcal{T}$ defined by

$$\Xi_h Z(t) = B(t) - B(h) - \gamma(h, t)/2, \quad t \in \mathcal{T}.$$

The law of $\Xi_h Z$ is uniquely determined by the following conditions: $\Xi_h Z$ is Gaussian, $\Xi_h Z(h) = 0$ almost surely (a.s.) and the incremental variance function of $\Xi_h Z$ is γ . Note that these conditions do not involve σ^2 .

Next, setting $Z^{[h]}(t) = B(t) - \sigma^2(t)/2 + r(h, t)$ we have

$$\Xi_h Z(t) = Z^{[h]}(t) - Z^{[h]}(h), \qquad t \in \mathcal{T}.$$
(1.3)

In view of Lemma 6.1 $Z^{[h]}$ is the exponential tilt of Z by Z(h) i.e.,

$$\mathbb{P}\{Z^{[h]} \in A\} = \mathbb{E}\left\{e^{Z(h)}\mathbb{I}\{Z \in A\}\right\}, \quad \forall A \in \mathcal{B}(\mathbb{R}^{\mathcal{T}}),$$

where $\mathcal{B}(\mathbb{R}^{\mathcal{T}})$ is the σ -field generated by all evaluation maps. The representation (1.1) implies that (see e.g., [12,50])

$$-\ln \mathbb{P}\{\zeta_{Z}(t_{i}) \leq x_{i}, 1 \leq i \leq n\} = \mathbb{E}\left\{\max_{1 \leq i \leq n} e^{Z(t_{i}) - x_{i}}\right\} = \mathbb{E}\left\{e^{Z(h)}\max_{1 \leq i \leq n} e^{Z(t_{i}) - Z(h) - x_{i}}\right\}$$
$$= \mathbb{E}\left\{\max_{1 \leq i \leq n} e^{\Xi_{h}Z(t_{i}) - x_{i}}\right\}$$
(1.4)

holds for $t_i \in \mathcal{T}, x_i \in \mathbb{R}, i \leq n$ i.e.,

c 1 1

$$\zeta_Z \stackrel{fda}{=} \zeta_{\Xi_h Z}. \tag{1.5}$$

Since as mentioned above the process $\Xi_h Z$ can be characterised without making reference to σ^2 , by (1.5) it follows that the law of ζ_Z depends on γ only!

Observe that we can define $Z^{[h]}$ via exponential tilting for any random process Z such that $\mathbb{E}\{e^{Z(h)}\}=1$. Furthermore, the calculation of the fidi's of ζ_Z via (1.4) does not refer to the

2

Download English Version:

https://daneshyari.com/en/article/7549928

Download Persian Version:

https://daneshyari.com/article/7549928

Daneshyari.com