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Abstract

We establish large sample approximations for an arbitrary number of bilinear forms of the sample
variance–covariance matrix of a high-dimensional vector time series using ℓ1-bounded and small ℓ2-
bounded weighting vectors. Estimation of the asymptotic covariance structure is also discussed. The results
hold true without any constraint on the dimension, the number of forms and the sample size or their ratios.
Concrete and potential applications are widespread and cover high-dimensional data science problems such
as tests for large numbers of covariances, sparse portfolio optimization and projections onto sparse principal
components or more general spanning sets as frequently considered, e.g. in classification and dictionary
learning. As two specific applications of our results, we study in greater detail the asymptotics of the trace
functional and shrinkage estimation of covariance matrices. In shrinkage estimation, it turns out that the
asymptotics differ for weighting vectors bounded away from orthogonality and nearly orthogonal ones in
the sense that their inner product converges to 0.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction1

A large number of procedures studied to analyze high- dimensional vector time series of2

dimension dn depending on the sample size n rely on projections, e.g. by projecting the observed3

random vector onto a spanning set of a lower dimensional subspace of dimension Ln . Examples4

include sparse principal component analysis, see e.g. [20], in order to reduce dimensionality of5

data, sparse portfolio replication and index tracking as studied by [4], or dictionary learning,6

see [1], where one aims at representing input data by a sparse linear combination of the elements7

of a dictionary, frequently obtained as the union of several bases and/or historical data.8

When studying projections, it is natural to study the associated bilinear form v′
nΣ̂nwn ,9

vn, wn ∈ Rdn , representing the dependence structure in terms of the projections’ covariances.10

Here and throughout the paper Σ̂n is the (uncentered) sample variance–covariance matrix.11

In order to conduct inference, large sample distributional approximations are needed. For a12

vector time series model given by correlated linear processes, we established in [17] a strong13

approximation by a Brownian motion for a single quadratic form, provided the weighting vectors14

are uniformly bounded in the ℓ1-norm. It turned out that the result does not require any condition15

on the ratio of the dimension and the sample size, contrary to many asymptotic results in high16

dimensional statistics and probability.17

In the present article, we study the more general case of an increasing number of quadratic18

forms as arising when projecting onto a sequence of subspaces whose dimension converges to19

∞. Noting that the analysis of autocovariances of a stationary linear time series appears as a20

special case of our approach, there are a few recent results related to our work: [23] established21

a central limit theorem for a finite number of autocovariances, whereas in [22] the case of long22

memory series has been studied. [8] has studied the asymptotic theory for detecting a change in23

mean of a vector time series with growing dimension.24

To treat the case of an increasing number of bilinear forms, we consider two related but25

different frameworks: The first framework uses a sequence of Euclidean spaces Rdn equipped26

with the usual Euclidean norm. The second framework embeds those spaces in the sequence27

space ℓ2 equipped with the ℓ2-norm. It is shown that, in both frameworks, an increasing number28

of, say Ln , quadratic forms can be approximated by Brownian motions without any constraints29

on Ln , dn and n apart from n → ∞. One of our main results asserts that, for the assumed time30

series models, one can define, on a new probability space, equivalent versions and a Gaussian31

process Gn taking values in C([0, 1],RLn ), such that32

sup
t∈[0,1]

1
√

nLn

⏐⏐⏐(v( j)
n

′(Σ̂⌊nt⌋ − EΣ̂⌊nt⌋)w( j)
n

)Ln

j=1 − Gn(t)
⏐⏐⏐ = oP (1),33

as n → ∞, almost surely (a.s.), without any constraints on Ln , dn .34

We believe that those results have many applications in diverse areas, as indicated above.35

In this paper we study in some detail two direct applications: The first application considers the36

trace operator, which equals the trace matrix norm ∥·∥tr when applied to covariance matrices. We37

show that the trace of the sample covariance matrix, appropriately centered, can be approximated38

by a Brownian motion, a.s. on a new probability space, which also establishes the convergence39

rate40 ⏐⏐∥Σ̂n∥tr − ∥EΣ̂n∥tr
⏐⏐ = OP (n−1/2dn).41

The second application elaborated in this paper is shrinkage estimation of a covariance matrix42

as studied in depth for i.i.d. sequences of high-dimensional random vectors as well as dependent43

vector time series, see by [12,13] and [16] amongst others. In order to regularize the sample44
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