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Abstract

We deal with some extensions of the space-fractional diffusion equation, which is satisfied by the density
of a stable process (see Mainardi et al. (2001)): the first equation considered here is obtained by adding an
exponential differential (or shift) operator expressed in terms of the Riesz–Feller derivative. We prove that
this produces a random component in the time-argument of the corresponding stable process, which is
represented by the so-called Poisson process with drift. Analogously, if we add, to the space-fractional
diffusion equation, a logarithmic differential operator involving the Riesz-derivative, we obtain, as a
solution, the transition semigroup of a stable process subordinated by an independent gamma subordinator
with drift. Finally, we show that an extension of the space-fractional diffusion equation, containing both the
fractional shift operator and the Feller integral, is satisfied by the transition density of the process obtained
by time-changing the stable process with an independent linear birth process with drift.
c⃝ 2017 Published by Elsevier B.V.
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1. Introduction 1

The diffusion equation has been generalized in the fractional sense by many authors 2

(e.g. [41,38,8,2]): in particular [25] and [26] consider the time-fractional Cauchy problems, 3

while in [14] the order of both time and space derivatives is fractional. Later, in [22] and [23], 4
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the time and space fractional diffusion equation was studied and solved analytically, also in1

the asymmetric case. The probabilistic expression of the solution to the diffusion equation with2

time-derivative of fractional order ν is given in [31], in terms of iterated stable processes (in3

particular, for ν = 1/2n, n ∈ N, the n-times iterated Brownian motion).4

The term ’anomalous diffusion’ usually indicates a diffusive process that does not follow5

the behavior of classical Gaussian diffusions (see e.g. [28,11]). In the real world, anomalous6

diffusions are observed, for example, in turbulent plasma transport, photon diffusion, cell7

migration and so on. When a fractional derivative of order ν ∈ (0, 2) replaces the time-derivative8

in a diffusion model, we get an anomalous diffusion, for ν ̸= 1, since its mean squared9

displacement follows the power law in time, Dtν , with the constant coefficient D. In particular,10

for ν ∈ (0, 1) it behaves as a subdiffusion, slower than the classical one, while, for ν ∈ (1, 2), we11

get a superdiffusion, which is faster (see [22]).12

The stochastic time–space fractional heat-type equation has been treated in [30]. For applica-13

tions to physical and financial problems, see also [18,29,36]. Recently anomalous diffusions are14

often modeled by the so-called continuous-time random walks (CTRWs), which are defined as15

random walks subordinated to a counting renewal process (see [27,37]).16

We consider here extensions of the following space-fractional diffusion equation, i.e.17

∂t u(x, t) = Dα,θ
x u(x, t),18

where Dα,θ
x is the Riesz–Feller derivative of order α ∈ (0, 2], defined below. In particular19

we introduce in the above equation additional terms represented by the so-called fractional20

exponential (or shift) operator Oα,θ
c,x or the fractional logarithmic operator Pα

c,x (see Definitions 121

and 4 below). We are thus led to study the following equations, again for α ∈ (0, 2],22

∂t u(x, t) =

[
aDα,θ

x + λ(I − Oα,θ
−1,x )

]
u(x, t) (1.1)23

24

∂t u(x, t) =
[
aDα

x + µPα
1/ρ,x

]
u(x, t) (1.2)25

(under appropriate initial and boundary conditions), where we denote by Dα
x = Dα,0

x the26

symmetric Riesz derivative. We prove that the solution to Eq. (1.1) coincides with the transition27

semigroup of the subordinated process defined as Sα,θ (at + N (t)), t ≥ 0, where Sα,θ :=28

Sα,θ (t), t ≥ 0, is an α-stable process and N := N (t), t ≥ 0, is an independent Poisson29

subordinator, with parameter λ. In the second case, we prove instead that Eq. (1.2) is satisfied30

by the transition semigroup of another subordinated process defined as Sα(at + Γ (t)), where31

Sα := Sα,0 is a symmetric α-stable process and Γ (t), t ≥ 0, is an independent gamma32

subordinator, with scale parameter µ > 0. However, in both cases, the processes obtained are, for33

any α ∈ (0, 2), pure jump models, while, only for α = 2, they have a jump–diffusion behavior.34

In particular, we notice that Sα(at + Γ (t)) reduces, for α = 2 and a = 0, to the well-known35

Variance Gamma (VG) process. Jump–diffusions and VG processes are applied in finance, in36

particular for asset pricing (see e.g. [9]). For a general α ∈ (0, 2), the process Sα(at + Γ (t))37

can be considered as a generalization of both stable and geometric stable processes (see, for38

example, [21]), to which it reduces in special cases.39

In the last section we prove that an extension of (1.1), obtained by adding a Feller fractional40

integral, is satisfied by the transition density of a stable process time-changed by an independent41

linear birth process with drift.42

Therefore, in all these cases, the additional operator introduced in the fractional diffusion43

equation entails the appearance of a random element in the time argument of the corresponding44
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