

Available online at [www.sciencedirect.com](http://www.elsevier.com/locate/spa)

stochastic processes and their applications

[Stochastic Processes and their Applications](http://dx.doi.org/10.1016/j.spa.2017.07.015) (**1111**) **HI-HI**

www.elsevier.com/locate/spa

Limit theorems for Hilbert space-valued linear processes under long range dependence

Marie-Christine Düker

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Received 26 January 2017; received in revised form 23 May 2017; accepted 27 July 2017 Available online xxxx

Abstract

Let $(X_k)_{k \in \mathbb{Z}}$ be a linear process with values in a separable Hilbert space H given by $X_k = \sum_{j=0}^{\infty} (j + 1)$ 1)^{−*N*} ε_{k-j} for each $k \in \mathbb{Z}$, where $N : \mathbb{H} \to \mathbb{H}$ is a bounded, linear normal operator and $(\varepsilon_k)_{k \in \mathbb{Z}}$ is a sequence of independent, identically distributed H-valued random variables with $E\varepsilon_0 = 0$ and $E \|\varepsilon_0\|^2 < \infty$. We investigate the central and the functional central limit theorem for $(X_k)_{k \in \mathbb{Z}}$ when the series of operator norms $\sum_{j=0}^{\infty}$ ||(*j* + 1)^{-*N*} ||_{op} diverges. Furthermore, we show that the limit process in case of the functional central limit theorem generates an operator self-similar process. ⃝c 2017 Elsevier B.V. All rights reserved.

Keywords: Linear processes; Long memory; Functional central limit theorem; Self-similarity; Hilbert space

1. Introduction

In this paper, we study long-range dependent linear processes with values in a separable Hilbert space H. Given a sequence of bounded linear operators $u_j : \mathbb{H} \to \mathbb{H}$, $j \geq 0$ and a sequence of independent, identically distributed H-valued random variables $(\varepsilon_k)_{k \in \mathbb{Z}}$ with $E\varepsilon_0 = 0$ and $E ||\varepsilon_0||^2 < \infty$, we define the linear process

$$
X_k = \sum_{j=0}^{\infty} u_j(\varepsilon_{k-j}), \quad k \in \mathbb{Z}.
$$
 (1)

E-mail address: [Marie-Christine.Dueker@ruhr-uni-bochum.de.](mailto:Marie-Christine.Dueker@ruhr-uni-bochum.de)

<http://dx.doi.org/10.1016/j.spa.2017.07.015> 0304-4149/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: M. Düker, Limit theorems for Hilbert space-valued linear processes under long range dependence, Stochastic Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.07.015.

TICI F IN

2 *M. Düker / Stochastic Processes and their Applications () –*

We investigate the asymptotic distribution of the partial sums $S_n = \sum_{k=1}^n X_k$ and of the partial sums process $\zeta_n(t) = S_{\vert nt\vert} + \{nt\}X_{\vert nt\vert+1}$ with $t \in [0, 1]$, where $\lfloor \cdot \rfloor$ denotes the floor function and $\{x\} = x - |x|$.

The behaviour of the linear process $(X_k)_{k \in \mathbb{Z}}$ crucially depends on the convergence respectively divergence of the series $\sum_{j=0}^{\infty} ||u_j||_{op}$, where $|| \cdot ||_{op}$ denotes the operator norm. If $\sum_{j=0}^{\infty} ||u_j||_{op}$ ∞ , the process $(X_k)_{k \in \mathbb{Z}}$ is short range dependent. In this case, the central limit theorem holds with the usual normalizing sequence $n^{-\frac{1}{2}}$ and the normalized partial sums converge in distribution to an H -valued Gaussian random element (see [\[15\]](#page--1-0) and [\[14\]](#page--1-1)). We are interested in the situation when the series diverges.

Račkauskas and Suquet [[16\]](#page--1-2) investigate a functional central limit theorem for $(X_k)_{k \in \mathbb{Z}}$ as in [\(1\)](#page-0-0) with values in a Hilbert space \mathbb{H} when $\sum_{j=0}^{\infty} ||u_j||_{op}$ diverges with *u*₀ = *I* and *u_j* = *j*^{−*T*} for *j* ≥ 1, where $T \in L(\mathbb{H})$ satisfies $\frac{1}{2}I < T < I$ and is self-adjoint. Additionally, they assume that the operator *T* commutes with the covariance operator of ε_0 .

Characiejus and Račkauskas [[4](#page--1-3)[,5\]](#page--1-4) consider $(X_k)_{k \in \mathbb{Z}}$ with values in the Hilbert space $L_2(\mu)$ = $L_2(\mathcal{S}, \mathcal{S}, \mu)$ of square-integrable real-valued functions, where $(\mathcal{S}, \mathcal{S}, \mu)$ is a σ -finite measure space. They choose $u_i = (j + 1)^{-D}$ without requiring that the operator commutes with the covariance operator of ε_0 . In their case *D* is a multiplication operator given by $Df =$ ${d(s) f(s)} | s \in \mathbb{S}$ for each $f \in L_2(\mu)$ for a measurable function $d : \mathbb{S} \to \mathbb{R}$.

We combine both results, constructing a process with values in a complex Hilbert space $\mathbb H$ with inner product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\|\cdot\|$, choosing

$$
u_j = (j+1)^{-N}
$$
 (2)

for each *j* \geq 0, where *N* ∈ *L*(\mathbb{H}) is a normal operator, i.e. *N* commutes with its hermitian adjoint denoted by N^* , that is $NN^* = N^*N$.

To be more precise we give some details about operators. Let $A \in L(\mathbb{H})$, then it is called non-negative if $\langle Ax, x \rangle \ge 0$ for all $x \in \mathbb{H}$. For an additional operator $B \in L(\mathbb{H})$ the inequality $A \geq B$ means $A - B \geq 0$. We set $exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$ $\frac{A^k}{k!}$ and $a^A = \exp(A \log a)$ for $a > 0$. For further details about operators we refer to Comway [\[6\]](#page--1-5) and Akhiezer and Glazman [\[1\]](#page--1-6).

Our main results establish sufficient conditions for a central and a functional central limit theorem. More precisely we show convergence in distribution of $n^{-H}S_n$ in H and of $n^{-H}\zeta_n$ in the space $C([0, 1], \mathbb{H})$ to a Gaussian stochastic process with $H = \frac{3}{2}I - N$, where *N* is a normal operator and *C*([0, 1], \mathbb{H}) is the Banach space of continuous functions *x* : [0, 1] $\rightarrow \mathbb{H}$ endowed with the norm $||x|| = \sup_{0 \le t \le 1} ||x(t)||$.

As in [\[5\]](#page--1-4) we get an operator self-similar process. Such processes were first introduced by Lamperti [\[11\]](#page--1-7) and play an important role in the context of long memory. Later operator selfsimilar processes were studied by Laha and Rohatgi [\[10\]](#page--1-8). In our case we get a self-similar process with values in a complex Hilbert space H. With this in mind, we repeat the definition of self-similarity of Hilbert space-valued random sequences referring to Matache and Matache [\[13\]](#page--1-9).

Definition 1.1. A stochastic process $\{Y(t)|t \geq 0\}$ on a Hilbert space \mathbb{H} is called operator selfsimilar, if there exists a family ${T(a)|a > 0} \subset L(\mathbb{H})$, such that

$$
\{Y(at)|t\geq 0\} \stackrel{f.d.d.}{=} \{T(a)Y(t)|t\geq 0\},\
$$

for each $a > 0$, where $\frac{f.d.d.}{=}$ denotes the equality of the finite-dimensional distributions.

The set $\{T(a)|a > 0\} \subset L(\mathbb{H})$ is also called scaling family of operators. If $T(a) = a^G I$, where *G* is a fixed scalar and *I* is the identity operator, the process is called *G* self-similar.

Download English Version:

<https://daneshyari.com/en/article/7550251>

Download Persian Version:

<https://daneshyari.com/article/7550251>

[Daneshyari.com](https://daneshyari.com)