## **ARTICLE IN PRESS**



Available online at www.sciencedirect.com



stochastic processes and their applications

Stochastic Processes and their Applications [ ( 1111) 111-111

www.elsevier.com/locate/spa

# Limit theorems for Hilbert space-valued linear processes under long range dependence

Marie-Christine Düker

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Received 26 January 2017; received in revised form 23 May 2017; accepted 27 July 2017 Available online xxxx

#### Abstract

Let  $(X_k)_{k\in\mathbb{Z}}$  be a linear process with values in a separable Hilbert space  $\mathbb{H}$  given by  $X_k = \sum_{j=0}^{\infty} (j + 1)^{-N} \varepsilon_{k-j}$  for each  $k \in \mathbb{Z}$ , where  $N : \mathbb{H} \to \mathbb{H}$  is a bounded, linear normal operator and  $(\varepsilon_k)_{k\in\mathbb{Z}}$  is a sequence of independent, identically distributed  $\mathbb{H}$ -valued random variables with  $E\varepsilon_0 = 0$  and  $E \|\varepsilon_0\|^2 < \infty$ . We investigate the central and the functional central limit theorem for  $(X_k)_{k\in\mathbb{Z}}$  when the series of operator norms  $\sum_{j=0}^{\infty} \|(j+1)^{-N}\|_{op}$  diverges. Furthermore, we show that the limit process in case of the functional central limit theorem generates an operator self-similar process. (© 2017 Elsevier B.V. All rights reserved.

Keywords: Linear processes; Long memory; Functional central limit theorem; Self-similarity; Hilbert space

#### 1. Introduction

In this paper, we study long-range dependent linear processes with values in a separable Hilbert space  $\mathbb{H}$ . Given a sequence of bounded linear operators  $u_j : \mathbb{H} \to \mathbb{H}, j \ge 0$ and a sequence of independent, identically distributed  $\mathbb{H}$ -valued random variables  $(\varepsilon_k)_{k\in\mathbb{Z}}$  with  $E\varepsilon_0 = 0$  and  $E \|\varepsilon_0\|^2 < \infty$ , we define the linear process

$$X_k = \sum_{j=0}^{\infty} u_j(\varepsilon_{k-j}), \quad k \in \mathbb{Z}.$$
 (1)

E-mail address: Marie-Christine.Dueker@ruhr-uni-bochum.de.

http://dx.doi.org/10.1016/j.spa.2017.07.015 0304-4149/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: M. Düker, Limit theorems for Hilbert space-valued linear processes under long range dependence, Stochastic Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.07.015.

## **ARTICLE IN PRESS**

#### M. Düker / Stochastic Processes and their Applications I (IIII) III-III

We investigate the asymptotic distribution of the partial sums  $S_n = \sum_{k=1}^n X_k$  and of the partial sums process  $\zeta_n(t) = S_{\lfloor nt \rfloor} + \{nt\}X_{\lfloor nt \rfloor+1}$  with  $t \in [0, 1]$ , where  $\lfloor \cdot \rfloor$  denotes the floor function and  $\{x\} = x - \lfloor x \rfloor$ .

The behaviour of the linear process  $(X_k)_{k\in\mathbb{Z}}$  crucially depends on the convergence respectively divergence of the series  $\sum_{j=0}^{\infty} ||u_j||_{op}$ , where  $|| \cdot ||_{op}$  denotes the operator norm. If  $\sum_{j=0}^{\infty} ||u_j||_{op} < \infty$ , the process  $(X_k)_{k\in\mathbb{Z}}$  is short range dependent. In this case, the central limit theorem holds with the usual normalizing sequence  $n^{-\frac{1}{2}}$  and the normalized partial sums converge in distribution to an  $\mathbb{H}$ -valued Gaussian random element (see [15] and [14]). We are interested in the situation when the series diverges.

Račkauskas and Suquet [16] investigate a functional central limit theorem for  $(X_k)_{k\in\mathbb{Z}}$  as in (1) with values in a Hilbert space  $\mathbb{H}$  when  $\sum_{j=0}^{\infty} ||u_j||_{op}$  diverges with  $u_0 = I$  and  $u_j = j^{-T}$  for  $j \ge 1$ , where  $T \in L(\mathbb{H})$  satisfies  $\frac{1}{2}I < T < I$  and is self-adjoint. Additionally, they assume that the operator T commutes with the covariance operator of  $\varepsilon_0$ .

Characiejus and Račkauskas [4,5] consider  $(X_k)_{k\in\mathbb{Z}}$  with values in the Hilbert space  $L_2(\mu) = L_2(\mathbb{S}, \mathcal{S}, \mu)$  of square-integrable real-valued functions, where  $(\mathbb{S}, \mathcal{S}, \mu)$  is a  $\sigma$ -finite measure space. They choose  $u_j = (j + 1)^{-D}$  without requiring that the operator commutes with the covariance operator of  $\varepsilon_0$ . In their case D is a multiplication operator given by  $Df = \{d(s)f(s)|s\in\mathbb{S}\}$  for each  $f \in L_2(\mu)$  for a measurable function  $d: \mathbb{S} \to \mathbb{R}$ .

We combine both results, constructing a process with values in a complex Hilbert space  $\mathbb{H}$  with inner product  $\langle \cdot, \cdot \rangle$  and the corresponding norm  $\|\cdot\|$ , choosing

$$u_j = (j+1)^{-N}$$
(2)

for each  $j \ge 0$ , where  $N \in L(\mathbb{H})$  is a normal operator, i.e. N commutes with its hermitian adjoint denoted by  $N^*$ , that is  $NN^* = N^*N$ .

To be more precise we give some details about operators. Let  $A \in L(\mathbb{H})$ , then it is called non-negative if  $\langle Ax, x \rangle \ge 0$  for all  $x \in \mathbb{H}$ . For an additional operator  $B \in L(\mathbb{H})$  the inequality  $A \ge B$  means  $A - B \ge 0$ . We set  $\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$  and  $a^A = \exp(A \log a)$  for a > 0. For further details about operators we refer to Comway [6] and Akhiezer and Glazman [1].

Our main results establish sufficient conditions for a central and a functional central limit theorem. More precisely we show convergence in distribution of  $n^{-H}S_n$  in  $\mathbb{H}$  and of  $n^{-H}\zeta_n$  in the space  $C([0, 1], \mathbb{H})$  to a Gaussian stochastic process with  $H = \frac{3}{2}I - N$ , where N is a normal operator and  $C([0, 1], \mathbb{H})$  is the Banach space of continuous functions  $x : [0, 1] \to \mathbb{H}$  endowed with the norm  $||x|| = \sup_{0 \le t \le 1} ||x(t)||$ .

As in [5] we get an operator self-similar process. Such processes were first introduced by Lamperti [11] and play an important role in the context of long memory. Later operator self-similar processes were studied by Laha and Rohatgi [10]. In our case we get a self-similar process with values in a complex Hilbert space  $\mathbb{H}$ . With this in mind, we repeat the definition of self-similarity of Hilbert space-valued random sequences referring to Matache and Matache [13].

**Definition 1.1.** A stochastic process  $\{Y(t)|t \ge 0\}$  on a Hilbert space  $\mathbb{H}$  is called operator selfsimilar, if there exists a family  $\{T(a)|a > 0\} \subset L(\mathbb{H})$ , such that

$$\{Y(at)|t \ge 0\} \stackrel{f.d.d.}{=} \{T(a)Y(t)|t \ge 0\},\$$

for each a > 0, where  $\stackrel{f.d.d.}{=}$  denotes the equality of the finite-dimensional distributions.

The set  $\{T(a)|a > 0\} \subset L(\mathbb{H})$  is also called scaling family of operators. If  $T(a) = a^G I$ , where G is a fixed scalar and I is the identity operator, the process is called G self-similar.

Download English Version:

## https://daneshyari.com/en/article/7550251

Download Persian Version:

https://daneshyari.com/article/7550251

Daneshyari.com