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(2017), http://dx.doi.org/10.1016/j.spa.2017.06.011.

Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications xx (xxxx) xxx–xxx
www.elsevier.com/locate/spa

Time change equations for Lévy-type processes

Paul Krühnera, Alexander Schnurrb,c,∗

a Vienna University of Technology, FAM – Financial and Actuarial Mathematics, Wiedner Hauptstraße 8-10, AT–1040
Vienna, Austria

b Universität Siegen, Department Mathematik, Walter-Flex-Str. 3, DE–57068 Siegen, Germany
c Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, DE–44227 Dortmund, Germany

Received 11 August 2015; received in revised form 6 December 2016; accepted 20 June 2017
Available online xxxx

Abstract

We consider time change equations for Lévy-type processes. In this context we generalize the results of
Böttcher et al. (2013) significantly. Namely, we are able to incorporate measurable instead of continuous
multipliers. This opens a gate to find whole classes of symbols for which corresponding processes do exist.
In order to establish our results we carefully analyze the connection between time change equations and
classical initial value problems. This relationship allows us to transfer well-known results from this classical
subject of pure mathematics into the theory of stochastic processes. On the way to prove our main theorem
we establish generalizations of results on paths of Lévy-type processes.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction 1

The study of multiplicative perturbation has started with early papers like Dorroh [7] and 2

the more general versions by Gustafson and Lumer [13], see also Jacob [14]. Dorroh has 3

focused on the very relevant contraction semigroups on continuous function spaces perturbed 4

with a multiplier where the multiplying function is continuous, bounded and strictly positive. 5
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Pre-dating the paper of Dorroh, Volkonskii [25] has found a path transformation between1

Brownian motion and continuous sample path Markov processes on the real line. The similar2

transformation used by Lamperti [20] relates positive self-similar processes and Lévy processes.3

The generalization of this path transformation connects the analytic multiplicative perturbation4

theory with pathwise transformation of the corresponding stochastic processes. Ethier and5

Kurtz [9, Section 6] have investigated in their book the connection of the stochastic transform6

to the analytic multiplicative perturbation. In the present work we specialize it to Lévy-type7

processes which are characterized by their symbol q, cf. Jacob and Schilling [15] which can8

be seen as an encoding of the state based characteristics (b(x), c(x), F(x, ·))x∈E via q(x, u) =9

i⟨u, b(x)⟩ −
1
2 ⟨c(x)u, u⟩ +

∫
Rd

(
ei⟨u,y⟩

− 1 − i⟨u, χ(y)⟩
)

F(x, dy), cf. Proposition 2.7. Böttcher,10

Schilling and Wang [3] summarize that if (q(x, u))x∈E,u∈Rd is a symbol that belongs to a Markov11

process and g : E → R is continuous, bounded and strictly positive, then (g(x)q(x, u))x∈E,u∈Rd12

belongs to a Markov process as well. This is essentially the translation of Dorroh’s result to13

the stochastic setup. In the book of Ethier and Kurtz [9, Section 6] this approach is more14

general in the sense that they do allow for the multiplying function g to be only measurable15

and non-negative, however, the technical condition in their Theorem 1.1 cannot be verified easily16

from the symbol and the multiplying function. Engelbert and Schmidt [8] optimize the original17

approach of Volkonskii [25] and find exact conditions under which a multiplicative perturbed18

Brownian motion gives rise to a strong Markov process. Their approach is based on detailed19

knowledge of the Brownian local time or in some sense on path properties of the Wiener process.20

Path properties of Lévy-type processes have been studied in the paper of Schnurr [24] and are21

utilized herein to improve the result in Böttcher et al. [3] in two ways. First, we do allow that22

the multiplying function hits zero and, second, we allow for measurable instead of continuous23

multiplying functions. For a continuous multiplier we essentially need that the function does not24

grow too quickly near its zeros in order to ensure that these points become absorbing states. This,25

allows to adapt the arguments in Böttcher et al. [3] or Ethier and Kurtz [9].26

Applications of random time changes include the seminal work of Volkonskii [25], the simple27

necessary and sufficient condition in Engelbert and Schmidt [8], the work of Lamperti [20] to28

identify self-similar Markov process, see also Döring [5] and application to affine processes by29

Kallsen [18] and Gabrielli and Teichmann [12]. Time change techniques are also relevant for30

applications in finance, see e.g. [6]. Let us give a brief motivation in this context: if a stock price31

is modeled by S(t) = exp(X (t)) where X is a Lévy(-type) process, then it might be additionally32

desirable to account for the effect that decreased stock prices lead to a rise in trading activity. If33

the stock price is modeled instead by S(t) = exp(Z (t)) where Z (t) = X (
∫ t

0 g(Z (s))ds), then Z34

has higher activity when g is larger than 1, normal activity where g = 1 and decreased activity35

where g is smaller than one which easily allows to model various activity regions.36

The question for which symbols q : E × Rd
→ C (or classes of symbols), there exists a37

corresponding stochastic process is a vital part of ongoing research. Compare in this context:38

Jacob and Schilling [15] and Böttcher et al. [3]. Techniques in order to establish existence results39

include approaches via Dirichlet forms, the Hille–Yosida–Ray theorem and solutions to the40

martingale problem. Here, we contribute to this part of the theory using an approach via time41

changes. If one can prove by any of the above techniques that for the symbol q, there exists a42

corresponding process X then we get for the whole class of symbols which can be written as43

g(x)q(x, u), with g as described below, that corresponding processes do exist.44

The time change equations which are used in the present article are a certain kind of random45

time changes. They have to be distinguished from other random time changes like Bochner’s46

subordination. In this latter concept an independent increasing process L(u) serves as a new time47

scale of the process X , that is, (X (L(u)), u ≥ 0) is being considered (cf. [23]).48
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