
Please cite this article in press as: F. Caravenna, J. Corbetta, The asymptotic smile of a multiscaling stochastic volatility model, Stochastic Processes
and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.06.014.

Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications ( ) –
www.elsevier.com/locate/spa

The asymptotic smile of a multiscaling stochastic
volatility model

Francesco Caravennaa,∗, Jacopo Corbettab

a Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via Cozzi 55, I-20125 Milano,
Italy

b École des Ponts - ParisTech, CERMICS, 6 et 8 avenue Blaise Pascal, 77420 Champs sur Marne, France

Received 31 August 2015; received in revised form 5 October 2016; accepted 12 June 2017
Available online xxxx

Abstract

We consider a stochastic volatility model which captures relevant stylized facts of financial series,
including the multi-scaling of moments. The volatility evolves according to a generalized Ornstein–
Uhlenbeck processes with super-linear mean reversion.

Using large deviations techniques, we determine the asymptotic shape of the implied volatility surface
in any regime of small maturity t → 0 or extreme log-strike |κ| → ∞ (with bounded maturity). Even if
the price has continuous paths, out-of-the-money implied volatility diverges for small maturity, producing
a very pronounced smile.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The evolution of the price (St )t≥0 of an asset is often described by a stochastic volatility model
dSt = St (µ dt + σt dBt ), where (Bt )t≥0 is a standard Brownian motion and (σt )t≥0 is a stochastic
process. A popular choice for (σt )t≥0 is a process of Ornstein–Uhlenbeck type:

dσ 2
t = −c (σ 2

t )γ dt + dL t , (1.1)
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where (L t )t≥0 is a subordinator (i.e. a non-decreasing Lévy process) and c, γ ∈ (0, ∞) are
parameters, the usual choice being the case γ = 1 when the mean reversion is linear, cf. [3]. This
class of models is rich enough to reproduce many empirically observed stylized facts, including
heavy tails in the distribution of St and clustering of volatility.

Another remarkable stylized fact is the so-called multi-scaling of moments [10,11,14]. This
refers to the fact that E[|St+h − St |

q ] ≈ h A(q) as h → 0, where the scaling exponent is diffusive
only up to a finite threshold, i.e. A(q) = q/2 for q < q∗, while for q > q∗ an anomalous
scaling A(q) < q/2 is observed. Interestingly, it was recently proved in [8] that a stochastic
volatility model with σt as in (1.1) does not exhibit multi-scaling of moments in the linear case
γ = 1; however, multi-scaling of moments does occur in the super-linear case γ > 1, if the
Lévy measure of (L t )t≥0 has a polynomial tail at infinity.

It is natural to ask how stochastic volatility models with σt as in (1.1) behave with respect to
pricing, when γ > 1. This is a non-trivial problem, because the moment generating function of
St typically admits no closed form outside the linear case γ = 1. However, there is a special
limiting case which is analytically more tractable, defined as follows.

Consider a subordinator with finite activity: L t =
∑Nt

k=1 Jk , where (Nt )t≥0 is a Poisson process
and (Jk)k∈N are i.i.d. non-negative random variables. In this case Eq. (1.1) can be solved pathwise,
i.e. for any fixed realization of (L t )t≥0, because between jump times of the Poisson process
(Nt )t≥0 it reduces to the ordinary differential equation

d(σ 2
t ) = −c (σ 2

t )γ dt, (1.2)

which admits explicit solutions. The point is that, when γ > 1, one can let the jump size
diverge Jk → ∞ and (σt )t≥0 converges to a well-defined limiting process, which explodes at
the jump times of the Poisson process and solves (1.2) between them (see Fig. 1(a)). For γ > 2,
this limiting process (σt )t≥0 has square-integrable paths and can therefore be used to define a
stochastic volatility model.

In this paper we focus on this stochastic volatility model, which was introduced in [2] (in a
more direct way, see Section 2) and was shown to display several interesting features, including
multi-scaling of moments, clustering of volatility and the crossover in the log-return distribution
from power-law (small time) to Gaussian (large time). We are interested in the price of European
option and in the corresponding implied volatility.

We stress that, besides its own interest, our model retains a close link with the general class of
stochastic volatility models dSt = St (µ dt + σt dBt ) with σt as in (1.1) with γ > 2. For instance,
option price and implied volatility of our model provide an upper bound for all models in this
class with a finite activity subordinator (L t )t≥0 (see Section 3.3).

Our main results are sharp estimates for the tail decay of the log-return distribution
(Theorem 4.1), which yield explicit asymptotic formulas for the price of European options
(Theorem 4.3) and for the corresponding implied volatility surface (Theorem 3.2). Let us
summarize some of the highlights, referring to Section 3.4 for a more detailed discussion.

• We allow for any regime of either extreme log-strike |κ| → ∞ (with arbitrary bounded
maturity t , possibly varying with κ) or small maturity t ↓ 0 (with arbitrary log-strike κ ,
possibly varying with t). This flexibility yields uniform estimates for the implied volatility
surface σimp(κ, t) in open regions of the plane (κ, t), cf. Corollary 3.6.

• We show that out-of-the-money implied volatility diverges for small maturity, i.e. σimp(κ, t)
→ ∞ as t ↓ 0 for any κ ̸= 0, while σimp(0, t) → σ0 < ∞ (see Fig. 2). This shows that
stochastic volatility models without jumps in the price can produce very steep skews for the
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