
Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications ( ) –
www.elsevier.com/locate/spa

Domain and range symmetries of operator fractional
Brownian fields✩

Gustavo Didiera,∗, Mark M. Meerschaertb, Vladas Pipirasc

a Mathematics Department, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
b Department of Statistics and Probability, Michigan State University, 619 Red Cedar Road, East Lansing,

MI 48824, USA
c Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, CB#3260, Hanes

Hall, Chapel Hill, NC 27599, USA

Received 5 September 2016; accepted 12 April 2017

Available online xxxx

Abstract

An operator fractional Brownian field (OFBF) is a Gaussian, stationary increment Rn-valued random

field on Rm that satisfies the operator self-similarity property {X (cE t)}t∈Rm
L
= {cH X (t)}t∈Rm , c > 0, for

two matrix exponents (E, H ). In this paper, we characterize the domain and range symmetries of OFBF,
respectively, as maximal groups with respect to equivalence classes generated by orbits and, based on a new
anisotropic polar-harmonizable representation of OFBF, as intersections of centralizers. We also describe
the sets of possible pairs of domain and range symmetry groups in dimensions (m, 1) and (2, 2).
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1. Introduction

A random vector is called full if its distribution is not supported on a lower dimensional
hyperplane. A random field X = {X (t)}t∈Rm with values in Rn is called proper if X (t) is full
for all t ≠ 0. A linear operator P on Rm is called a projection if P2

= P . Any nontrivial
projection P ≠ I maps Rm onto a lower dimensional subspace. We say that a random field X
is degenerate if there exists a nontrivial projection P such that X (t) = X (Pt) for all t ∈ Rm .
We say that X is stochastically continuous if X (tn) → X (t) in probability whenever tn → t .
A proper, nondegenerate, and stochastically continuous random vector field X is called operator
self-similar (o.s.s.) if

{X (cE t)}t∈Rm
L
= {cH X (t)}t∈Rm for all c > 0. (1.1)

In (1.1),
L
= indicates equality of finite-dimensional distributions, E ∈ M(m, R) and H ∈

M(n, R), where M(p, R) represents the space of real-valued p × p matrices, and cM
=

exp(M(log c)) =

∞

k=0(M log c)k/k! for a square matrix M . For a univariate stochastic process
(namely, (m, n) = (1, 1)), the relation (1.1) is called self-similarity (see, for example, [17,35]).

An operator fractional Brownian field (OFBF, in short) is an Rn-valued random field X =
{X (t)}t∈Rm satisfying the following three properties: (i) it is Gaussian with mean zero; (ii) it

is o.s.s.; (iii) it has stationary increments, that is, for any h ∈ Rm , {X (t + h) − X (h)}t∈Rm
L
=

{X (t)− X (0)}t∈Rm . When (m, n) = (1, 1), OFBF is the celebrated fractional Brownian motion,
widely used in applications due to the long-range dependence property of its increments (see
[34,16]). When m = 1, n ≥ 1, OFBF is known as operator fractional Brownian motion (OFBM).

The theory of o.s.s. stochastic processes (m = 1, n ≥ 1) was developed by Laha and
Rohatgi [24] and Hudson and Mason [21], see also Chapter 11 in [29]. OFBM was studied
by Didier and Pipiras [13] (see also [1,33,22,23] on the related subject of multivariate long-range
dependent time series). For scalar fields (namely, m ≥ 1, n = 1), the analogues of fractional
Brownian motion and fractional stable motion were studied in depth by Biermé et al. [7],
with related work and applications found in [4,8,25,6,5,19,9,10,28,15,32]. Li and Xiao [26]
proved important results on o.s.s. random vector fields. Baek et al. [2] bridged the gap between
harmonizable and moving average integral representations for OFBF.

The domain and range symmetries of a proper, nondegenerate random field X starting at zero
are defined by

Gdom
1 (X) :=


A ∈ GL(m, R) : {X (At)}

L
= {X (t)}


,

Gran
1 (X) :=


B ∈ GL(n, R) : {B X (t)}

L
= {X (t)}


,

(1.2)

where GL(k, R) denotes the general linear group of invertible k × k matrices. Cohen et al. [11]
and Didier and Pipiras [14], respectively, characterized the range symmetries of operator stable
Lévy processes and OFBM.

Symmetry is an important modeling consideration, and a useful guide to model selection
(see [27] on Markov processes and [30] on measures). In particular, the interest in the study of
symmetries is tightly connected to two major themes: (a) anisotropy, i.e., when Gdom

1 (X) is not
the orthogonal group, and its applications in several fields such as bone radiographic imaging
and hydrology; and (b) the parametric identification of operator scaling laws, which depends on
both Gdom

1 (X) and Gran
1 (X). The latter theme is treated in detail for general o.s.s. random fields

in the related paper [12]. In regard to the former, note that the term “anisotropy”, like “nonlinear”
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