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Abstract

We investigate a random flight process approximation to a random scatterer Lorentz gas with variable
scatterer density in a gravitational field. For power function densities we show how the parameters of the
model determine recurrence or transience of the vertical component of the trajectory. Finally, our methods
show that, with appropriate scaling of space, time and the density of obstacles, the trajectory of the particle
converges to a diffusion with explicitly given parameters.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the random flight process that arises as the Boltzmann–Grad limit of a random
scatterer model (“Lorentz gas”) in a constant gravitational field in dimension three. We also
extend our model to other dimensions, where it can be considered as the random walk
approximation to the Boltzmann–Grad limit. The Lorentz gas model, which was introduced in
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1905 as a model for the motion of an electron in a metallic body [20], has been studied extensively
in the mathematics and physics literature. See [9] for a recent survey. Fundamentally, the model
consists of a particle moving in an array of fixed convex scatterers, which are placed either
periodically or randomly, and the particle either reflects specularly off of the scatterers (hard
core model) or is pushed away via a potential (soft core model). We are motivated by the three
dimensional random scatterer hard core model where, in addition to interacting with scatterers,
the particle is also pulled down by a constant gravitational field. We generalize the process to
arbitrary dimension and investigate whether it is recurrent or transient. We show that dimension
three with constant density of scatterers is critical for determining recurrence versus transience
with respect to both dimension and the rate at which the density of scatterers increases.

Various aspects of the influence of a gravitational field on a Lorentz gas have previously been
investigated, see e.g. [7,28,29,34]. Of this prior work, only [7] has worked directly with the
Lorentz gas model. In [7] the authors establish the surprising result that the trajectory of a ball in
a two-dimensional, periodic, hard core, Lorentz gas with gravitation is (neighborhood) recurrent
[7, Theorem 1]. Heuristically, the pull of gravity is not strong enough to pull the particle to −∞,
but rather the scatterers are enough of an obstruction to make the particle bounce back up to
some finite energy level infinitely often. In addition to this (neighborhood) recurrence result,
a diffusive limit for the particle trajectory is also determined [7, Theorem 2]. We remark that
although [7, Theorem 1] is stated with a hypothesis that the particle has a sufficiently high initial
speed, as shown in [7, p. 838] all one needs for the particle to return to a fixed finite energy level
infinitely often is for the initial speed to be positive (this is a slight oversimplification—in the
deterministic setting of [7] the velocity must be uniformly distributed on a particular set specified
in [7], but there can be an arbitrarily small upper bound on the initial speed of a particle whose
initial velocity is in this set, see [7] for details).

One of the motivations of the present work is to investigate the robustness of these results
under perturbations of the model. However, as the authors of [7] mention in their companion
paper [6] their approach should extend to the three dimensional case, but the extension currently
seems intractable due to the complicated nature of the singularities. Thus we work, as the authors
of [28,29,34] do, with the Boltzmann–Grad limit of the random Poisson scatterer Lorentz gas
rather than the Lorentz gas itself. Our results suggest that dimension three is the most difficult
dimension and that the problem for the periodic Lorentz gas may become tractable again in
dimensions four and higher. We determine criteria for the recurrence or transience of the particle
trajectory for particular forms of the density of scatterers. Our methods allow us to derive several
types of invariance principles in multiple scaling regimes and determine the influence of the
density of scatterers on the limiting diffusion. A similar model with constant scatterer density was
previously considered in [29], where diffusion limits were obtained but questions of transience
and recurrence were not addressed.

The Boltzmann–Grad limit is a low density limit in which the number of scatterers in a fixed
box goes to infinity while, at the same time, the size of each scatterer goes to zero in such a
way that the distribution of the distance between scattering events for the tracer particle has a
non-degenerate limit. When the centers of scatterers are placed according to a Poisson pro-
cess and the rates are chosen appropriately, the asymptotic behavior of the moving particle
is described by a Markovian random flight process [10,30,31]. The Markovian nature of the
Boltzmann–Grad limit is due to the following two observations: (i) re-collisions with scatterers
become unlikely as the size of each scatterer goes to zero, and (ii) the Poisson nature of the scat-
terer locations means that knowing the location of one scatterer does not give information about
the locations of the other scatterers. Since analyzing the random Lorentz gas directly is beyond
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