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a b s t r a c t

This paper presents an assessment of the accuracy and applicability of a time domain finite element
method (TDFEM) for sound-field analysis in architectural space. This TDFEM incorporates several tech-
niques: (1) a hexahedral 27-node isoparametric acoustic element using a spline function; (2) a lumped
acoustic dissipation matrix; and (3) Newmark time integration method with an absolute diagonal scaled
COCG iterative solver. Sound fields in an irregularly shaped reverberation room of 166 m3 are computed
using TDFEM. The computed values and measured values for 125–500 Hz are compared, revealing that
the fine structure of the computed band-limited impulse responses agree with measured ones up to
0.1 s, with a cross-correlation coefficient greater than 0.93. The cross-correlation coefficient decreases
gradually over time, and more rapidly for higher frequencies. Moreover, the computed decay curves,
and the reverberation times, agree well with the respective measured ones, and with a better fit the
higher the frequency (up to 500 Hz).

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical analysis methods based on wave acoustics (wave-
based methods) such as finite element method (FEM) and boundary
element method are powerful numerical methods used to predict
sound fields in architectural space accurately with complicated
boundary conditions. Generally, a wave-based method entails large
computational cost for analyzing sound fields in architectural space
with practical dimensions as well as practical frequency ranges.
However, recently, the application of wave-based methods is
increasing gradually along with the rapid progress of computer
technology.

Although both time and frequency domain analyses using
wave-based methods are conducted for predicting sound fields in
architectural spaces, time domain analysis is straightforward in
calculating the impulse response of the space in a time domain
without the use of inverse Fourier transform. Various acoustical
parameters used for acoustical quality evaluation are calculable
from the impulse response.

The finite-difference time-domain (FDTD) method is a widely
used method of computing the impulse response in a space
[1–3]. The explicit formulation makes the computation efficient,
and the computational effort increases linearly in direct relation

to the number of discretization cells. However, the architectural
space boundary shape is approximated by a staircase approxima-
tion in many cases, which is a disadvantage of the FDTD method
because a room’s shape is an important factor to determine acous-
tic properties in an architectural space.

Because it enables modeling of complicated boundary shape,
FEM is an attractive method. Various methods incorporating FEM
are used for computing the impulse response in a space: indirect
method with inverse Fourier transform of frequency domain re-
sponse computed using frequency domain FEM (FDFEM) [4], a
method using FEM with a modal analysis approach [5,6], and a di-
rect method using time domain FEM (TDFEM) with direct time
integration method [7,8].

Among them, TDFEM can treat time variation of the boundary
condition and medium. Although this method typically requires a
solution technique of a linear system of equations at each time
step, the matrices arising from the finite element formulation are
generally sparse. Therefore, using a Krylov subspace iterative sol-
ver such as the Conjugate Gradient (CG) method, the memory
and operations required for TDFEM can be reduced approximately
to the order of degrees of freedom (DOFs) of the finite element
model, if a fast convergence of the iterative solver can be expected.
In addition, using the unconditionally stable direct time integra-
tion method, TDFEM has unconditional stability. Therefore, if
TDFEM provides a similarly accurate result as the FDTD method
using fewer elements per wavelength and a much larger time
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interval, which engenders a decrease of DOFs and total number of
time steps compared to those required for the FDTD method, then
the computational costs for the TDFEM would be favourable com-
pare to those required for the FDTD method. Moreover, TDFEM is
well suited to vector and/or parallel computation, which is also
the case for the FDTD method. Nevertheless, few studies have
examined application of TDFEM for sound-field analyses in archi-
tectural spaces.

To reduce the computational cost of the TDFEM and to use a
method for practical situations such as the design process of a
room and acoustic improvement of an existing room, the authors
developed TDFEM, including the following techniques [9]: (1)
hexahedral 27-node isoparametric acoustic element using spline
function [10,11], (2) lumped acoustic dissipation matrix, and (3)
Newmark time integration method with absolute diagonal scaled
COCG Krylov subspace iterative solver. Moreover, the authors have
already shown that the linear system of equations can be solved
efficiently using the iterative solver [9,12].

However, accuracy and applicability of the TDFEM to sound-
field analyses in architectural space remain unclear. Consequently,
this study was undertaken to assess the basic accuracy and appli-
cability of the TDFEM for sound-field analysis in architectural
space through comparison with measured values.

This paper is organized as follows. Section 2 presents outlines of
both mathematical and physical bases of the presented TDFEM. In
Section 3, we present a comparison of computed and measured re-
sults of a sound field in an irregularly shaped reverberation room
with volume of 166 m3. Finally, in Section 4, we present concluding
remarks.

2. Sound-field analyses using time domain finite element
method: TDFEM

Following a standard finite element procedure based on the
principle of minimum total potential energy applied to a three-
dimensional sound field, the following discretized matrix equation
in the frequency domain is obtained.

½K�fpg þ ix½C�fpg �x2½M�fpg ¼ ixqv0fWg ð1Þ

Therein, [M], [C], and [K] respectively denote acoustic mass, dis-
sipation, and stiffness matrices. Furthermore, i, {p}, q, x, v0, and
{W} respectively signify an imaginary unit (i2 = �1), sound pres-
sure vector, the air density, angular frequency, the particle velocity
and distribution vector. Assuming that � and �� respectively signify
first-order and second-order derivatives with respect to time, the
semi-discrete equation in the time domain can be expressed as
presented below.

½M�f€pg þ ½C�f _pg þ ½K�fpg ¼ q _v0fWg ð2Þ

Using an interpolation function N(x,y,z), the sound pressure
p(x,y,z) on an arbitrary point at (x,y,z) is assumed to be

pðx; y; zÞ ¼ fNðx; y; zÞgTfpge: ð3Þ

The analysis described in this paper uses a hexahedral 27-node
isoparametric acoustic element with the spline polynomial func-
tion for N(x,y,z) [10,11]. Acoustic element matrices used to con-
struct global matrices in Eq. (1) are given as expressed below.
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Herein, c and zn respectively represent the speed of sound and
normal surface impedance; e0 denotes the surface area to be inte-
grated. As described in this paper, a locally reactive model is as-
sumed for dissipation; then, [C]e can be reassembled into a
diagonal matrix as the lumped acoustic dissipation matrix.

In the time domain, Newmark b method [13] is used to solve Eq.
(2) step by step. If fpgt ; f _pgt and f€pgt at time t are known, then
{p}t+Dt and f _pgtþDt can be given as

fpgtþDt ¼ fpgt þ Dtf _pgt þ ðDtÞ2 1
2
� b

� �
f€pgt þ ðDtÞ2bf€pgtþDt ; ð7Þ

f _pgtþDt ¼ f _pgt þ Dtð1� cÞf€pgt þ Dtcf€pgtþDt : ð8Þ

In those equations, Dt is the time interval between t and t + Dt,
and c,b are parameters related to the accuracy and stability of the
method. For this study, c is set to 1/2 to maintain the second-order
accuracy. Then, with the Eqs. (7) and (8), it is possible to transform
Eq. (2) into

½M� þ Dt
2
½C� þ bðDtÞ2½K�

� �
f€pgtþDt ¼ ffgtþDt � ½C�fPg � ½K�fQg; ð9Þ

where

fPg ¼ f _pgt þ
Dt
2
f€pgt ;

fQg ¼ fpgt þ Dtf _pgt þ
1
2
� b

� �
ðDtÞ2f€pgt : ð10Þ

Consequently, f€pgtþDt is calculable by solving Eq. (9). Finally, the
sound pressure {p}t+Dt and first derivative of the sound pressure
f _pgtþDt are calculable respectively by substituting f€pgtþDt into Eqs.
(7) and (8).

Several Newmark methods exist with different values of param-
eter b [14]. The following three special cases of the Newmark
methods are well known: constant average acceleration method
with b = 1/4, linear acceleration method with b = 1/6, and Fox–
Goodwin method with b = 1/12. Here, if b P 1/4, then the
Newmark method is unconditionally stable.

Moreover, the Newmark method usually requires solution of
the linear system of equations with Eq. (9) at each time step. As
a shorter expression, Eq. (9) can be rewritten as

½A�f€pgtþDt ¼ fbgtþDt : ð11Þ

Therein, [A] and {b}t+Dt respectively denote the coefficient ma-
trix and the right-hand side vector in Eq. (9). When zn is given as
a complex number, [A] becomes a complex sparse symmetric ma-
trix – a non-Hermitian – because [K] and [M] are real sparse sym-
metric matrices; [C] is a complex diagonal matrix. As a special case,
when zn is given as a real number for simplification, [A] becomes a
real symmetric matrix. Then, to solve Eq. (11), we adopt Conjugate
Orthogonal Conjugate Gradient (COCG) method [15], which is the
efficient iterative solver for the FEM formulation in [9], and which
is also used here. This method is equivalent to CG method when [A]
becomes a real symmetric matrix. As a preconditioning technique,
the absolute diagonal scaling [16], not increasing the number of
complex component in the [A], is used. Using preconditioning,
the scaled matrix [A] is written as

a0ij ¼
aijffiffiffiffiffiffiffiffi

jaiij
p ffiffiffiffiffiffi

jajj

p
j
; ð12Þ

where aij and a0ij are components of [A] before and after precondi-
tioning. This preconditioned COCG method is well suited to parall-
elization. Using the relative residual 2-norm d, the stopping
criterion for stopping the succession of iterations of the COCG
method is used as
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