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Abstract The two-body orbital transfer problem from an elliptic parking orbit to an excess veloc-

ity vector with the tangent impulse is studied. The direction of the impulse is constrained to be

aligned with the velocity vector, then speed changes are enough to nullify the relative velocity. First,

if one tangent impulse is used, the transfer orbit is obtained by solving a single-variable function

about the true anomaly of the initial orbit. For the initial circular orbit, the closed-form solution

is derived. For the initial elliptic orbit, the discontinuous point is solved, then the initial true

anomaly is obtained by a numerical iterative approach; moreover, an alternative method is

proposed to avoid the singularity. There is only one solution for one-tangent-impulse escape

trajectory. Then, based on the one-tangent-impulse solution, the minimum-energy multi-

tangent-impulse escape trajectory is obtained by a numerical optimization algorithm, e.g., the

genetic method. Finally, several examples are provided to validate the proposed method. The

numerical results show that the minimum-energy multi-tangent-impulse escape trajectory is the

same as the one-tangent-impulse trajectory.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

1. Introduction

The two-body orbital transfer problem from a parking orbit to
a given excess velocity vector is a fundamental one in space

exploration. The minimum-energy trajectory optimization for
this problem has been studied for many years. For the initial

circular orbit, an approximate analytical solution was obtained
for the minimum-energy three- and four-impulse transfers
between a given circular orbit and a given hyperbolic velocity

vector at infinity.1 For the transfer from the initial circular
orbit to an excess velocity vector, the two-impulse escape is
never simultaneously of lower cost than either the one- or

three-impulse.2 Recently, Ocampo et al.3,4 studied the one-
and three-impulse escape trajectories, which can be con-
structed to serve as initial guesses for determining constrained
optimal multi-impulsive escape trajectories. For the initial

elliptic orbit, the optimal three-impulse transfer between an
elliptic orbit and an escape asymptote was solved.5 Moreover,
a simple numerical technique was proposed to minimize the

time-of-flight for the multi-impulse transfer from an arbitrary
elliptic orbit to a hyperbolic escape asymptote.6
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The existing methods for the impulse escape trajectory opti-
mization problem do not include any constraint on the impulse
direction.7,8 If the impulse direction is aligned with the velocity

vector, the impulse is called ‘‘tangent impulse’’ and a speed
change will finish the impulse maneuver to nullify the relative
velocity. The tangent orbit problem has also existed for many

years. The classical Hohmann transfer is a cotangent transfer
and is the minimum-energy one among all the two-impulse
transfers between coplanar circular orbits and between copla-

nar coaxial elliptic orbits.9 The cotangent transfer problem
between coplanar noncoaxial elliptic orbits has aroused con-
siderable interest in recent years. The numerical solution was
obtained based on the orbital hodograph theory.10 Moreover,

the closed-form solution was obtained by using the geometric
characteristics11 and by the flight-direction angle,12 respec-
tively. The latter reference also gave the closed-form solution

for the solution-existence condition. In addition, Zhang and
Zhou13 studied the tangent orbit technique in 3D based on a
new definition of orbit ‘‘tangency’’ condition for noncoplanar

orbits. Different from the orbital transfer problem, the orbital
rendezvous problem requires the same time-of-flight for both
the chaser and the target. Zhang et al. solved the two-impulse

rendezvous problem between two coplanar elliptic orbits with
only the second impulse14 and both impulses being tangent,15

respectively. Furthermore, Zhang et al.16 solved the two-
impulse rendezvous problem between coplanar elliptic and

hyperbolic orbits.
This paper studies the coplanar orbit escape problem from

an elliptic orbit to an excess velocity vector only with the tan-

gent impulse. For a given initial orbit and a given excess veloc-
ity vector, the one-tangent-impulse transfer trajectory is
obtained by solving a single-variable piecewise function. Then

the optimal multi-tangent-impulse escape trajectory is
obtained by the genetic method.

2. Orbital elements of transfer orbit

Assume that the spacecraft moves in a given initial orbit, a tan-
gent impulse Dv with magnitude k is imposed at P1 (see Fig. 1),

where the position vector relative to the Earth’s center F1 is r0
and the velocity vector is v0, then the velocity vector of the
transfer orbit (or the final hyperbolic orbit) at P1 is

vf ¼ v0 þ Dv ¼ ðv0 þ kÞv0=v0 ð1Þ

where rj = krjk, vj = kvjk, j = 0, f, and 0 and f denote the ini-
tial and final orbits, respectively. A relationship between the

magnitudes of velocity and position vectors is

vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2

rj
� 1

aj

� �s
ð2Þ

where l is the standard gravitational parameter, and a the
semimajor axis. Then, the magnitude of the velocity can be

written as a function of the initial true anomaly,

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
p0
ð1þ e20 þ 2e0 cosu0Þ

r
ð3Þ

where u is the true anomaly, uþ1 the true anomaly at infinity of
the excess hyperbolic orbit, e the eccentricity, and p the semil-
atus rectum.

From the energy equation, the semimajor axis of the final
hyperbolic orbit is

af ¼ �
l

vþ1
� �2 ð4Þ

where vþ1 is the excess velocity vector. Substituting Eq. (4) into
Eq. (2) gives

vf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþ1
� �2 þ 2l

r0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþ1
� �2 þ 2l

p0
ð1þ e0 cosu0Þ

s
ð5Þ

Thus, for a given initial true anomaly u0 of the impulse
point, the magnitude of the tangent impulse is

k ¼ vf � v0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþ1
� �2 þ 2l

p0
ð1þ e0 cosu0Þ

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
p0

1þ e20 þ 2e0 cosu0ð Þ
r

ð6Þ

The eccentricity vector of the final orbit is

ef ¼
1

l
ðv2f �

l
r0
Þr0 � ðr0 � vfÞvf

� �
ð7Þ

By using the following expression

r0 � vf ¼ 1þ k
v0

� �
ðr0 � v0Þ ¼ 1þ k

v0

� �
l
h0

r0e0 sinu0

¼ ffiffiffiffiffiffiffi
lp0
p

1þ k
v0

� �
e0 sinu0

1þ e0 cosu0

ð8Þ

the eccentricity vector in Eq. (7) can be written as

ef ¼
1

l
vþ1
� �2 þ l

p0
ð1þ e0 cosu0Þ

� �
r0

	

� ffiffiffiffiffiffiffi
lp0
p

1þ k
v0

� �2
e0 sinu0

1þ e0 cosu0

v0

)
ð9Þ

whose magnitude is the eccentricity ef of the final orbit.

The normalized eccentricity vector is

êf ¼
ef
ef
¼

cosxf cosXf � sinxf sinXf cos If

cosxf sinXf þ sinxf cosXf cos If

sinxf sin If

2
64

3
75 ð10Þ

Fig. 1 Transfer to an excess velocity vector by a tangent impulse,

example 1.
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