
Leibniz on the requisites of an exact arithmetical quadrature

Federico Raffo Quintana
Centro de Estudios de Filosofía e Historia de la Ciencia (CEFHIC) de la Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Argentina

a r t i c l e i n f o

Article history:
Received 14 June 2017
Received in revised form
12 September 2017
Available online xxx

Keywords:
Leibniz
Arithmetical quadrature
Infinite series
Completeness
Regularity
Exactitude

a b s t r a c t

In this paper we will try to explain how Leibniz justified the idea of an exact arithmetical quadrature. We
will do this by comparing Leibniz’s exposition with that of John Wallis. In short, we will show that the
idea of exactitude in matters of quadratures relies on two fundamental requisites that, according to
Leibniz, the infinite series have, namely, that of regularity and that of completeness. In the first part of
this paper, we will go deeper into three main features of Leibniz’s method, that is: it is an infinitesimal
method, it looks for an arithmetical quadrature and it proposes a result that is not approximate, but
exact. After that, we will deal with the requisite of the regularity of the series, pointing out that, unlike
the inductive method proposed by Wallis, Leibniz propounded some sort of intellectual recognition of
what is invariant in the series. Finally, we will consider the requisite of completeness of the series. We
will see that, although both Wallis and Leibniz introduced the supposition of completeness, the German
thinker went beyond the English mathematician, since he recognized that it is not necessary to look for a
number for the quadrature of the circle, given that we have a series that is equal to the area of that
curvilinear figure.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the Parisian period (1672e1676), Leibniz developed a method
for dealing with the problem of the quadrature of the circle and of
conic sections, which has three main features: it is an infinitesimal
method; it looks for an arithmetical quadrature; and it proposes a
result that is not approximate, but exact. If we take into account the
first two features, Leibniz’s proposal is relatively similar to that
presented by John Wallis in his Arithmetica infinitorum. However,
the desired exactitude in matters of quadratures, especially in
regards to the quadrature of the circle, is certainly one of Leibniz’s
main innovations. In this paper we will try to explain how Leibniz
justified the idea of an exact quadrature. Given the two co-
incidences with Wallis’ proposal that we have pointed out, we will
do this by comparing Leibniz’s exposition with that of the English
mathematician. In short, wewill show that the idea of exactitude in
matters of quadratures relies on two fundamental requisites that,
according to Leibniz, the infinite series have, namely, that of reg-
ularity and that of completeness. We will divide this paper into
three parts. In the first one, we will go deeper into the features of
Leibniz’s method that we have just pointed out. In the second, we
will deal with the requisite of the regularity of the series, pointing

out that, unlike the inductive method proposed by Wallis, Leibniz
propounded some sort of intellectual recognition of what is
invariant in the series. Finally, in the third part, wewill consider the
requisite of completeness of the series. We will see that, although
both Wallis and Leibniz introduced the supposition of complete-
ness, the German thinker went beyond the English mathematician,
since he recognized that it is not necessary to look for a number for
the quadrature of the circle, given that we have a series that is equal
to the area of that curvilinear figure.

2. Main features of Leibniz’s method for quadratures

We will examine in more detail the three chief features of the
method proposed by Leibniz for quadratures in the Parisian period.
We based this description on the important treatise De quadratura
arithmetica circuli, ellipseos et hyperbolae, cujus corollarium est
trigonometria sine tabulis, which Leibniz wrote between 1675 and
1676 (from now on: DQA), and on other texts of the same period, in
which he dealt with the same problem andwhichwere preliminary
for that treatise.

First, it is an infinitesimal method. Beyond the question about
what is for Leibniz an infinitesimal (for this, see Arthur, 2009; Raffo
Quintana, 2016, pp. 208e213), this implies that his procedure is
inscribed in the line of the ‘geometry of indivisibles’, which at the
same time is inserted in the tradition of Archimedes’ geometry (onE-mail address: federq@gmail.com.
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Leibniz’s division of geometry, see Probst, 2012, pp. 149e150).
Leibniz confesses his admiration for Archimedes, especially
because he was the first to show the key of geometry, namely, “the
Indivisibles, or, if you prefer, the infinitely small (.)” (AVII 6, 498).1

Thus, when Leibniz refers to the method or to the geometry of
indivisibles, he is not referring exclusively to the procedure pre-
sented by Bonaventura Cavalieri in his Geometria indivisibilibus
continuorum quadam nova ratione promota of 1635. Leibniz points
out that, “(.) when I speak of the Geometry of indivisibles, I
envisage something much wider than that of Cavalieri, which
seems to me to be a poor portion of that of Archimedes” (A VII 6,
498).2 This explains the fact that Leibniz refers to his own infini-
tesimal method as a ‘method of indivisibles’, since it is inscribed in
the tradition of geometry that starts with Archimedes, although he
does not employ indivisibles (A VII 6, 521).

Second, as the title of the treatise suggests, Leibniz’s method
aims to achieve an arithmetical quadrature. In this sense, as we have
said, he followed the path traced by John Wallis in his Arithmetica
infinitorum of 1656, which was read by Leibniz in his years in Paris
(Hofmann, 1973, pp. 247e251; Beeley, 2007, pp. 65e68). In the
seventeenth century, the opinion that the problem of the quadra-
ture of the circle, that is, the construction of a square equal in area
to a circle, cannot be solved through the classical methods of ge-
ometry, was quite widespread (Jesseph, 1999, pp. 20e26; a more
detailed account can be found in; Crippa, 2014). This does not mean
that the treatment of this problem was abandoned, but that the
new approaches were different from those of classical geometry. As
Lützen points out, the mathematicians of the seventeenth century
were not mainly concerned with the geometric constructability of
the quadrature of the circle, but with the analytic expression of its
area (2014, p. 246; see also Lützen’s useful classification of the
different quadratures of the circle in pp. 215e218). An example of
one of these new approaches is Wallis’ idea that arithmetic is the
foundation of all mathematics, and thus the results of geometry,
which is subordinated to arithmetic, can be obtained more clearly
by appealing to arithmetic. In regards especially to the problem of
the quadrature, this implies representing a sequence of approxi-
mations (such as those described in Archimedes’ method) in an
arithmetical way, that is, as infinite sums whose results can be
obtained through an arithmetical calculus (Mancosu, 1996, pp. 86e
87; Jesseph, 1999, pp. 37e38 and 173e188; Beeley, 2013). Similarly,
Leibniz understands that there is another resource which is to
‘curvilinear geometry’ (that is, the kind of geometry which deals
with problems that cannot be reduced to equations, such as, for
example, the problem of the quadrature of the circle) what the
algebraic equations are to ‘rectilinear geometry’ (which by contrast
includes problems that can be reduced to equations), namely, the
progressions or series, which pertain to arithmetic:

Although the Equations abandon us at this time, the Nature of
things provides us with other means, namely, Progressions. For,
just as rectilinear Problems are reduced to the calculus and to
numbers by means of Equations, in the same way the difficulty

of Curvilinear [problems] is transferred from Geometry to
Arithmetic by means of progressions. (A VII 6, 88e89)3

This appeal to the series is fundamental for Leibniz’s proposal,
since it allows him to transform a geometrical problem into an
arithmetical one. The importance of this is expressed in the two
goals which Leibniz recognized that his infinitesimal method has,
namely, on the one hand, that it allows a circle or any other
curvilinear figure to be transmuted into a equipollent rational
figure, and, on the other hand, that it allows a circle or the
considered curvilinear figure to be exhibited by means of infinite
rational sums (A VII 6, 641).

Third, Leibniz proposes an exact quadrature, that is, which
provides a value which is not merely approximate. Leibniz em-
phasizes this in the preface of the treatise DQA (A VII 6, 170e174).
With the proposal of an exact quadrature of the circle, he goes even
beyond Wallis, who showed how to express with the greatest
proximity the quadrature of the circle through numbers, that is, to
the extent that the nature of numbers allows it (Wallis, 1656,
Dedicatio, sig. Bb2). Indeed, at the end of the Arithmetica infin-
itorum, Wallis confesses that the ratio of the circle to the square did
not appear as clearly as hewould havewished (Wallis, 1656, p. 197).
One year later, in his Mathesis universalis (1657, p. 219), he wrote
that those who believe they have found an exact value are delirious
(see Jesseph, 1999, p. 12, note 20). However, as Crippa (2014, pp.
393e395) points out, after reading Mercator’s Logarithmotechnia
(1668), Wallis accepted the idea of an exact quadrature of the sector
of an hyperbola, since there is a series equal to it, and Leibniz knew
Wallis’ review of Mercator’s work. Now, although Leibniz was not
the first in giving an exact arithmetical quadrature, one of his main
contributions was to provide an exact arithmetical quadrature of
the circle. Thus, it seems clear that, at least in Leibniz’s view, Wallis
was committed with the arithmetical quadrature of the hyperbola,
but not of the circle.

By proposing an exact arithmetical quadrature of the circle, in
some way Leibniz also challenges the boundaries that Descartes’
Géométrie had proposed in matters of exactitude. According to
Descartes, only the curves capable of being expressed through
algebraic equations are considered in analytic geometry
(Descartes, 1659, pp. 21e23). In Cartesian geometry, geometrical
curves are distinguished from mechanical curves, which are not
exact, like the first ones, since for their construction approxima-
tions to infinity are required. In this sense, for Descartes ‘exacti-
tude’ and ‘algebricity’ are synonymous terms (Breger, 1986, p. 120;
see also Knobloch, 2006, pp. 116e120; and Probst, 2012, pp. 151e
152). Thus, the infinitesimal methods, which proceed by infinite
approximations, are beyond the scope of analytic geometry. Many
years later, in Du nouveau système de l’infini of 1703, Michel Rolle
raised the same criticism regarding infinitesimal mathematics:
“[b]ut it seems that this feature of exactness does not reign
anymore in geometry since the new system of infinitely small
quantities has been mixed to it” (Rolle, 1703, p. 312; translation
from Mancosu, 1996, p. 165).4 In proposing an exact quadrature of
the circle, Leibniz believes he has overcome one of the limitations
that the infinitesimal methods of that time had, namely, the fact
that they always provided approximations, unlike the exactitude
which the analytic geometry of Descartes implied. In this sense,
we say that he wants to propose an infinitesimal method whose
result is not approximate, but exact.

1 “Indivisibilia certe, aut si mavis infinite parva (.)”. Unless otherwise stated,
translations are ours. We will refer to Leibniz, 1923 et seq. following the standard
abbreviation: A, followed by series (in Roman numerals), volume (in Arabic nu-
merals) and page number. Ex.: A VII 6, 600.

2 “Porro cum de Geometria indivisibilium loquor longe aliquid Cavaleriana
amplius intelligo, quae mihi non videtur esse nisi portio mediocris Archimedeae”.

3 “Mais quoyque les Equations nous abandonnent en cette rencontre, la Nature
des choses n’a pas laissé pourtant de nous fournir un autre moyen, sçavoir les
Progressions. Car comme les Problemes rectilignes, se reduisent au calcul et aux
nombres par les Equations; de même la difficulté des Curvilignes est transferée de
la Geometrie a l’Arithmetique par les progressions”.

4 “Mais il semble que ce caractere d’exactitude ne regne plus dans la Géométrie
depuis que l’on y a mêlé le nouveau Systême des Infiniment petits”.
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