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a b s t r a c t

Areas of biology such as cell and molecular biology have been dominated by research directed at con-
structing mechanistic explanations that identify parts and operations that when organized appropriately
are responsible for the various phenomena they investigate. Increasingly the mechanisms hypothesized
involve non-sequential organization of non-linear operations and so exceed the ability of researchers to
mentally rehearse their behavior. Accordingly, scientists rely on tools of computational modeling and
dynamical systems theory in advancing dynamic mechanistic explanations. Using circadian rhythm
research as an exemplar, this paper explores the variety of roles computational modeling is playing. They
serve not just to determine whether the mechanism will produce the desired behavior, but in the dis-
covery process of hypothesizing mechanisms and in understanding why proposed mechanisms behave
as they do.
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1. Introduction

Many areas of biology (physiology, cell and molecular biology,
etc.) have been slow to embrace computational modeling (fields
such as population genetics and neuroscience being exceptions).
The focus of research has been on developing and applying
experimental techniques to develop accounts of mechanisms
thought to be responsible for phenomena such as gene expression,
metabolism, and cell division. Accounts of mechanistic explanation
advanced by philosophers (Bechtel & Abrahamsen, 2005; Bechtel &
Richardson, 1993/2010; Machamer, Darden, & Craver, 2000) have
emphasized the importance of characterizing parts and operations
that, when organized appropriately, are able to generate the phe-
nomena of interest. Little, though, has been said about how re-
searchers connect their understanding of parts and operations with
the phenomenon to be explained. When they hypothesize mech-
anisms with parts organized in relatively simple ways, researchers
are able to rely on mentally rehearsing the operations proposed to
evaluate whether they could generate the phenomenon. For
example, by imagining the execution of each successive step in the

textbook description of protein synthesis one can imagine how a
polypeptide chain is generated that matches the sequence of co-
dons on the DNA. Mental operations mirror the causal operations
proposed to operate in nature. Computational modeling was not
needed to understand how these mechanisms (which are the focus
of what I refer to as basic mechanistic explanations), could account
for the phenomenon.

In the late 20th century the mechanisms proposed in fields such
as cell and molecular biology became more complicated as more
parts and operations were identified. This alone, however, was not
sufficient to lead biologists to turn to computational modeling, as
even with lots of parts, they could still rehearse the succession of
operations mentally to determine whether the proposed mecha-
nisms sufficed to generate the phenomenon. Rather, the need for
computational models becamemore serious with the development
of accounts of mechanisms in which the operations were no longer
organized sequentially but featured multiple feedback loops. The
need became even greater when the operations appealed to could
only be described by non-linear mathematical equations. Humans,
including scientists, perform poorly in predicting the behavior of
non-linear processes and keeping track of multiple interactions due
to feedback loops, especially if they operate on multiple time-
scales. To overcome these limits, scientists often develop
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mathematical characterizations of the different operations and
employ these in computational models that simulate how hy-
pothesized mechanisms will behave. Mechanisms whose behavior
can only be accounted for with computational modeling and ana-
lytic tools such as those offered in dynamical systems theory no
longer count as basic mechanistic explanations but fall in the
hybrid category of dynamic mechanistic explanations (Bechtel &
Abrahamsen, 2010, 2012). The goal of this paper is to elaborate
on the roles computational models play in dynamic mechanistic
accounts.

In this paper my main focus is on mechanistic explanations
(explanations in which proposed mechanisms play a central role).1

Evaluating explanations often involves predicting (or retrodicting)
what would happen if the explanationwere correct. The most basic
use of computational modeling in biology involves pre-
dictiondpredicting whether a proposed complex mechanism
would produce the phenomena for which it is posited as an
explanation. I will introduce this role for computational modeling
in Section 2. Much of scientific research, however, is involved not in
evaluating, but in discovering explanations (proposing possible
mechanisms). The very factors that made it important to employ
computational models to determine how a proposed mechanism
would behave have also led researchers to employ them in the
discovery process. In this paper I will illustrate such use of
computational modeling in proposing a mechanism (Section 3) and
in proposing how a given mechanism might be embedded in
another (Section 4). A common, although not a necessary, goal of
explanation is to provide understandingdmaking it intelligible to
us why the proposed mechanism would account for the phenom-
enon. As proposed mechanisms become complicated and complex,
one can predict how a mechanism will behave through computa-
tional modeling without understanding why it will behave that
way. Acquiring understanding often requires abstracting from the
details of a mechanism to uncover basic design principles it em-
ploys (Green, Levy, & Bechtel, 2014; Levy & Bechtel, 2013). In Sec-
tion 5, I discuss the use of computational modeling in identifying
the basic design principles that enable a mechanism to generate a
phenomenon.

To illustrate these different roles of computational modeling, I
will focus on modeling in chronobiology, the field of biology
devoted to understanding circadian and other biological rhythms.
Circadian rhythms are endogenously generated oscillations that are
entrainable to the light/dark cycle of the local environment and
regulate a wide range of physiological and behavioral activities by
restricting expression of specific genes to particular times of day.
Research in the early 20th century demonstrated that these
rhythms were endogenous by showing that in the absence of cues
from the environment, organisms would exhibit rhythms slightly
different than 24 h (hence, the rhythms were named circadian from
circa, about, and dies, day). Much of the pioneering research in the
later decades of the 20th century on themechanism responsible for
circadian rhythms was conducted on animals (especially fruit flies
and mice), but circadian rhythms have also been demonstrated and
studied in plants, fungi, and cyanobacteria. I beginwith research on
animal circadian rhythms as that makes apparent the conditions
under which computational modeling first became important but
also how it followed on the articulation of proposed mechanisms.
In subsequent sections I turn to research on circadian rhythms in
cyanobacteria where modeling has played a central role in the

discovery of the responsible mechanism and in understanding how
it produces the phenomenon.

2. Modeling to establish a proposed mechanism’s sufficiency

The proposal of a mechanism for circadian rhythms in animals
built on experimental findings that suggested the nature of the
mechanism. Through a screen of mutant fruit flies for disrupted or
altered circadian rhythms, Konopka and Benzer (1971), discovered
strains of flies that exhibited shortened or lengthened rhythms or
were arrhythmic. They traced the mutation in all strains to a single
gene they named period (per). Discovering how the gene figured in
generating circadian rhythms had to await the development of
cloning techniques. In pioneering research applying these tech-
niques to circadian rhythms, Hardin, Hall, and Rosbash (1990)
determined that concentrations of both per mRNA and the pro-
tein PER oscillated with a period of about 24 h, and that the phase of
peak PER concentration lagged about four hours behind that of per
mRNA. This led them to propose a mechanism involving a negative
feedback loop (known as a transcriptionetranslation feedback loop
or TTFL) in which, after it is synthesized, PER is transported back
into the nucleus where it inhibits (by a then unknown process) the
transcription of per (see Fig. 1).

The idea of oscillations resulting from negative feedback was
familiar in engineering and it is relatively easy to rehearse mentally
the operations of the mechanism to understand how it could give
rise to the oscillations in the concentrations of per mRNA and PER:
When concentrations of PER are low, the gene per is not inhibited
and it is transcribed into per mRNA, which is then translated into
PER. This causes concentrations of PER to increase, but as they do so,
more is transported back into the nucleus where it inhibits the
process of transcription. As less PER is synthesized and what there
has been synthesized is broken down, concentrations of PER drop
again. But as they do so, the inhibition on per transcription is reduced
and more PER is once again synthesized. Although such an account
reveals how this mechanism could generate oscillations, it is
compatible both with the oscillations gradually dampening and the
mechanism settling into a steady state where the transcription and
translation of PER is just sufficient tomatch its degradation andwith
the oscillations being sustained indefinitely, which is required if the
oscillation in PER concentration is to explain circadian rhythms.
Determining which happens requires tracking quantitatively the
concentrations of PER. This is made even more difficult because
sustained oscillations require one or more non-linear operations,
which are very challenging to keep track of in mental rehearsal.

Five years after the TTFL explanation was first proposed,
Goldbeter (1995) produced a computational model to show that
the proposed feedback mechanism would not dampen but would
exhibit sustained oscillations. The basic structure of his model had
in fact been introduced several decades earlier by Goodwin (1963),

Fig. 1. The transcriptionetranslation feedback loop (TTFL) proposed to explain circa-
dian rhythms in fruit flies. See text for details.

1 Mechanistic explanations are a species of explanation and there are other types
of explanation scientists employ. Even in the fields of biology I discuss, explanations
sometimes take the form of historical analyses or network analyses (which situate
the responsible mechanism in a larger context).
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