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a b s t r a c t

We outline three principles that should guide us in the construction of a theory of canonical quantum
gravity: (1) diffeomorphism invariance, (2) implementing the proper dynamics and related constraint
algebra, (3) local Lorentz invariance. We illustrate each of themwith its role in model calculations in loop
quantum gravity.
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1. Introduction

Since at present we do not have unexplained experimental
evidence that requires a quantum theory of gravity for its under-
standing, we find ourselves in a rather unconventional situation.
In physics, theory is usually guided by experiment. The situation
is perhaps akin to the one faced by Einstein when developing the
general theory of relativity. Although there were some experi-
ments to be explained, he had to be mostly guided by physical
principles and intuition. Here we would like to highlight three
physical principles that we believe should provide guidance in
canonical quantum gravity, and the implications of their use in
some model situations.

The first principle is diffeomorphism invariance. No one believes
that a fundamental theory of gravity should depend on background
structures therefore space–time diffeomorphism invariance needs to
be implemented. The history of how we ended up with background
independence as a principle throughout the history of physics all the
way back to the relational ideas of Mach is well recounted by Smolin.
Modern gravity theories are, however, complicated. For instance
in general relativity one has several layers of structure to consider.
The most elementary is the dimensionality of the space–time. Then its
topology. Furthermore there is the differential structure, the signature
and finally the metric and fields. We will restrict our discussion to

approaches that consider the dimension, differential structure and
signature as given (although the introduction of certain measures in
Hilbert spaces may imply a change in differential structure, one
expects that in semiclassical regimes the differential structure is
unchanged). Only diffeomorphism invariant questions about the
metric and the fields can be considered physically relevant. Topology
change can be accommodated in various approaches to quantum
gravity, including the canonical one (Horowitz, 1991).

Any physical description involves many entities whose properties
the theory has the task to describe. The standard description involves
some absolute framework with respect to which properties are
defined. In Newtonian physics, for instance, the background is a
three dimensional Euclidean space and a one dimensional universal
time. General relativity essentially is a background independent
theory where the fundamental properties of the elementary entities
consist entirely of relationships between those elementary entities.
In 1912 Einstein had found the basic form of the gravitational field
but it took him three years longer to write the equations of motion.
His covariance principle required that the laws of nature were the
same in all reference frames. But in a generally covariant theory
statements of the kind of “what is the value of the gravitational field
at coordinates xa” make no sense. Indeed, a coordinate transforma-
tion can assign a region with large curvature to a coordinate point
that prior had low curvature. In 1915 Einstein solved the problem.
The idea is that it is only possible to describe relations. For example it
is invariant to state that in a region in which certain light rays are
present space–time has certain geometric properties (e.g. curvature).
Einstein himself put is this way: “the results of our measuring are
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nothing but verifications of… meetings of the material points of
our measuring instrument with other material points, coincidences
between the hands of a clock and points on the clock dial and
observed point events happening at the same point at the same
time.” In our view this relational vision of background independence
is the main guiding principle that must be followed when construct-
ing a theory of quantum gravity. In such a theory only observable
quantities (that are invariant under general coordinate transforma-
tions) can be associated with physical quantum operators. In the last
few years there has been important progress in the description of the
evolution and geometry in terms of such quantities (Gambini, Porto,
Pullin, & Torterolo, 2009).

In the canonical approach, diffeomorphism invariance is
reflected in the algebra of constraints. But this is not enough. In
particular one has to pay careful attention to modifications that
the theory may suffer through the use of non-traditional measures
that arise in loop quantum gravity (Ashtekar & Lewandowski,
1997). We will see that this may restrict the types of diffeomorph-
isms that are recovered in the low energy limit of the theory.
The non-traditional measures arise directly as a consequence of
diffeomorphism invariance and are fairly unique (Lewandowski,
Okołów, Sahlmann, & Thiemann, 2006; Fleischhack, 2006).

Related to the aforementioned principle is the second one: one
should properly implement the dynamics of the theory. Since
general relativity is a generally covariant theory, the Hamiltonian
vanishes and one is just left with a set of constraints from which
the dynamics needs to be disentangled. The constraints satisfy
an algebra that needs to be implemented at a quantum level.
Enforcing the constraint algebra assures that the canonical frame-
work, which splits space–time into space and time, represents a
space–time diffeomorphism invariant theory (Teitelboim, 1973;
Hojman, Kuchař, & Teitelboim, 1976). This poses tight constraints
on the quantization process that otherwise contains a large degree
of ambiguity. In particular if one uses lattices to regularize the
theory, reproducing the algebra of constraints can become quite a
challenge.

The last principle is local Lorentz invariance. What is meant by this
in the context of canonical quantum gravity is that if one studies the
low energy limit, the resulting graviton (and other particles if one
couples the theory to matter) should have propagators that deviate
from Lorentz invariance at most only slightly. We will illustrate with a
calculation what is meant by “slightly” in this context. In particular,
deviations from Lorentz invariance that become large at the Planck
scale are unacceptable as was argued by Collins, Perez, Sudarsky,
Urrutia, and Vucetich (2004).

We will provide examples of the three principles in action in
the following sections.

2. Diffeomorphism invariance

The first guiding principle is diffeomorphism invariance, or to
put it in other terms, background independence. Most physicists
believe a modern theory of gravity should not depend on back-
ground structures, since then one would have to motivate where
the structures came from, and the whole point of general relativity
was to eliminate any preferred observers in nature.

In canonical gravity one uses a 3þ1 dimensional split to
formulate the equations of the theory. That split, obviously,
violates space–time diffeomorphism invariance. The resulting
framework is still invariant under spatial diffeomorphisms, such
symmetry being reflected in the presence of the diffeomorphism
constraint. Spatial diffeomorphism invariance plays a key role in
loop quantum gravity. It essentially determines the kinematical
structure of the theory through the selection of an inner product
that is unconventional from the point of view of ordinary field

theories (Lewandowski et al., 2006; Fleischhack, 2006). In turn,
this structure implies that physical operators, like those represent-
ing areas and volumes, have discrete spectra (Rovelli & Smolin,
1995).

The breakage of space–time diffeomorphisms only means that
the equations are not invariant, the resulting theory still is. In fact,
the algebra of constraints is known to enforce that the resulting
formalism is space–time diffeomorphism invariant (Teitelboim,
1973; Hojman et al., 1976). So, in principle, if upon quantization
one ended up with a set of operators representing constraints that
under commutators close an algebra isomorphic to the classical
one under Poisson brackets, one could be confident that the
resulting quantum theory is space–time diffeomorphism invariant.

But as we mentioned, one faces difficulties in implementing
the constraint algebra at a quantum level. Up to present, no
models have met such requirement (loop quantum cosmology,
where there are no spatial degrees of freedom, implements them
trivially so it is really not a strong guiding principle for those
models). Moreover, it is customary to propose to deal with the
diffeomorphism and Hamiltonian constraints separately. The dif-
feomorphism constraint is solved via the group averaging techni-
que (Ashtekar, Lewandowski, Marolf, Mourao, & Thiemann, 1995;
Giulini & Marolf, 1999), a procedure that cannot be implemented
for the Hamiltonian constraint. Treating the constraints differently
raises the possibility that space–time diffeomorphism invariance
will be violated.

One way to deal with the problem is to gauge fix the theory,
eliminating some or all the constraints. Classically, a gauge fixed
theory is by definition diffeomorphism invariant. Although it is not
manifestly diffeomorphism invariant, since one is dealing with
the theory in a form that has no gauge symmetries, the results
are diffeomorphism invariant in the sense that they can later be
translated into any gauge in terms of gauge dependent variables.

But upon quantization, even in gauge fixed scenarios, there are
subtleties. For instance, it can happen that the resulting variables
that appear in the models have different ranges of values than
those in the classical theory. That can imply that the set of
diffeomorphisms considered is a restricted one.

An example of this is present in the treatment of the exterior of
a vacuum black hole space–time we discussed in Gambini and
Pullin (2009a,b). In that case, one can gauge fix the variables to
spherical symmetry. One is left with two canonical pairs, one
“longitudinal” along the radial direction Ex;Ax and a “transverse”
one Eφ;Aφ, with the variables depending on the radial coordinate x
and time t. One can further gauge fix the radial variable so that the
diffeomorphism constraint is gone. The resulting Hamiltonian
constraint is

H¼ � Eφ

ðxþaÞγ2
A2
φðxþaÞ

8

 !
′� Eφ

2ðxþaÞþ
3ðxþaÞ
2Eφ

þðxþaÞ2 1
Eφ

� �
′¼ 0; ð1Þ

where a is a constant and γ is the Barbero–Immirzi parameter.
Multiplying by 2ðxþaÞ=Eφ and grouping terms as,

H¼ ðxþaÞ3
ðEφÞ2

 !
′�1� 1

4γ2
ððxþaÞA2

φÞ′¼ 0; ð2Þ

yields an Abelian constraint. Since the constraint is a total
derivative, it can immediately be integrated to yield,

Z
H dx¼ C ¼ ðxþaÞ3

ðEφÞ2

 !
�x� 1

4γ2
ððxþaÞA2

φÞ; ð3Þ

with C being a constant of integration. At x¼0 one can impose
isolated horizon boundary conditions, which imply 1=Eφ ¼ 0 and
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