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a b s t r a c t

The Correspondence Principle (CP) of old quantum theory is commonly considered to be the requirement
that quantum and classical theories converge in their empirical predictions in the appropriate asymptotic
limit. That perception has persisted despite the fact that Bohr and other early proponents of CP clearly
did not intend it as a mere requirement, and despite much recent historical work. In this paper, I build on
this work by first giving an explicit formulation to the mentioned asymptotic requirement (which I shall
call the Congruence Requirement (CR)) and then discussing various possible formulations of CP for
emission on the basis of the primary literature as well as general physical and metaphysical considera-
tions. I shall then show that, in all of the most probable interpretations of CP that consider quantum
theory as a universal theory, any system incorporating both CR and CP for emission would in fact be
inconsistent. Old quantum theory measurably contradicts classical physics in the classical regime.
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1. Introduction

1.1. Congruence of frequencies in the low-frequency, high-quantum
number regime

The hallmark of old quantum theory is the assumption that
physical systems can only exist in discrete “stationary states” and
jump between these states with a certain probability. In line with
this, Bohr (1913) famously assumed that only a subset of classically
possible trajectories is available for the electron orbiting the
nucleus. These “allowed states” are distinguished from the
excluded ones by their particular energy (or angular momentum)
content, which is always restricted to a sequence En (or Ln),
ranging over a natural number n. These restrictions are called
the quantization conditions. It is further assumed that when the
electron is present in one such otherwise classical orbit, it does not
emit radiation. Radiation is only produced when the electron
jumps to an orbit with lower energy. If the energy of the initial

orbit is En and that of the final orbit is Em, the light radiated will be
of frequency

ωnm ¼ 1
ℏ
ðEn�EmÞ; ð1Þ

where ℏ is Planck's constant. Bohr showed that the assumption
En ¼ K=n2, where K is the Rydberg constant, suffices to explain the
basic structure of the hydrogen spectrum.

There are two aspects of this theory that would be particularly
shocking to any physicist of the time. First of all, the frequency of
radiation bears no simple relationship to the mechanical frequency
of the motion of the source at the time of radiation. This defies
classical intuitions, according to which the frequency of a wave
(whether mechanical or electromagnetic) is solely determined by
the vibrational frequency of the source. Secondly, the theory
makes no predictions about the intensity or polarization of the
light radiated. The solution to these two problems turned out to be
closely related. Let τ≔n�m be the number of orbits the electron
“jumps”. On the one hand, the orbital frequency decreases as n
increases, and on the other, the radiation frequency increases with τ.
Using these two facts, Bohr showed that in the limit in which
n;m⪢τ, where all frequencies are sufficiently small, we can get the
radiation frequency to be equal to an integer multiple of the
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mechanical frequency:

ωnm � τω ð2Þ

where ω¼ωn �ωm. Although the early Bohr (1913, p. 13; 1920,
pp. 429–430) tended to stipulate Eq. (2) and use that to derive K for
the energy spectrum, En ¼ K=n2, it was later well-known that one
can prove Eq. (2) quite generally from the quantization conditions
and the condition that n;m⪢τ (Van Vleck, 1924, footnote 4).1 This
coincidence of the radiation frequencies with integer multiples of
orbital frequencies in this limit provides much consolation, given
that according to classical physics, any multiply periodic motion of
principal frequency ω can be expanded in terms of its Fourier
harmonics

xðtÞ ¼ ∑
1

τ ¼ 0
Cτ cos ðτωtþατÞ ð3Þ

and will radiate all of its harmonics τω.2 Let us call the regime in
which Eqs. (2) and (3) are correct the low-frequency, high-
quantum number (LFHQ) limit. Of course, Eq. (3) is never exactly
true for a charged particle in the classical theory, because as the
particle radiates, it loses some of its energy and thus cannot stay
on the periodic path. However, Eq. (3) will be a good approxima-
tion for appropriately low frequencies.

1.2. Congruence of intensities in the low-frequency, high-quantum
number regime

If each radiated frequency is related to one of the harmonics in
the Fourier expansion of the electron's orbit, shouldn't the prob-
ability with which a given transition n-n�τ occurs also be
related to the relative weight of the τth harmonic in the series?
One could formulate this as an educated guess, but as long as we
are working in the LFHQ limit, this result follows simply from the
requirement that quantum predictions go over to the classical
ones in the regime in question. To see this, let us first ask what
classical electrodynamics predicts about intensities.3 Classically,
when a charged particle undergoes a motion slow enough to be
described by (3), it radiates all and only the harmonics present in
the expansion and does so in accordance with Larmor's formula
for power radiated:

PðtÞ ¼ 2e2

3c3
€x2ðtÞ:

A simple calculation shows (Fedak & Prentis, 2002, pp. 338–339) that
the average radiated power associated with the τth harmonic is

Pτ ¼
e2

3c3
τ4ω4C2

τ ð4Þ

Now all we need to add in order to find quantum transition
probabilities is the assumption that the observational predictions
of quantum mechanics be in congruence with those of classical

electrodynamics in the limit where the predictions of the latter
have been confirmed.

Congruence Requirement (CR): The statistical observable pre-
dictions of any quantum theory must be in agreement with
those of classical physics within the margin of error in the limit
where classical physics has been tested and confirmed.

To be sure, “the limit where classical physics has been tested and
confirmed” is in need of clarification. Indeed, any theory-
independent formulation of CR leaves open the question as to
what range of what theoretical variables should be taken to
represent this classical limit in any particular theory. In the case
of old quantum theory, limits such as high quantum numbers,
large numbers of quanta, large distances, large masses, and
characteristic actions much larger than ℏ might come to mind.
My arguments below turn out to hold up under all mentioned
definitions of “the classical limit”. It is important to note, however,
that low mechanical frequency is not a reasonable criterion for the
classical realm. Synchrotron radiation, systems of radiating binary
stars, and in general macroscopic radiating systems do not require
quantum treatment in modes of high frequency of revolution. And
of course a fundamental challenge is to explain in comparison to
what the “low frequencies” are supposed to be low.4

What does CR teach us about transition probabilities? First note
that the mechanism of radiation is very different in the quantum
and classical pictures. While in the classical theory all harmonics
are radiated simultaneously, quantum mechanics dictates that the
electron in the orbit x(t) has only one chance of emitting radiation
by falling into a lower orbit, thus radiating one of the harmonics.
If these transitions occur with the right probabilities, however,
an ensemble of particles will emit a spectrum identical to what is
expected from a classical ensemble (hence the “statistical” quali-
fication). In order for this to occur we would need to have

Pτ ¼ AnmðℏωnmÞ ¼ AnmðℏτωÞ;

where Anm is defined as the rate per unit time of the quantum
transition n-m accompanied by a radiation of frequency τω in the
LFHQ limit. This results in

Anm ¼ e2

3c3ℏ
τ3ω3C2

τ : ð5Þ

CR dictates that any proposed formula for quantum transition
probabilities must converge to the right-hand side of (5) in the
LFHQ limit.

Thus, we have derived a precise asymptotic relationship
between quantum mechanical amplitudes and their classical
counterparts using merely the laws of classical electrodynamics,
the Congruence Requirement, and the quantization conditions.5

In the following section, I will show how this formula serves as a
segue to various formulations of the Correspondence Principle for
emission.

2. On the search for a Correspondence Principle

There can be little doubt that what the early Bohr had in mind
with “the Correspondence Principle” was intended to go beyond
a congruence requirement. In a conversation with Rosenfeld,
a frustrated Bohr is reported to have said that “the requirement
that the quantum theory should go over to the classical description

1 The proof invokes action-angle canonical coordinates and the fact that
ωk ¼ ∂W=∂Jk where W is the energy of the system and J is the “action” variable
(k¼1, 2, 3 for the three spatial coordinates). Given the quantization condition J ¼ nℏ
and the assumption expressed in the equation n;m⪢τ, we can write the energy
released in a transition as ℏωnm ¼ΔW � dW ¼ ∑kð∂W=∂JkÞdJk ¼ ∑kωkdJk �
∑kωkτℏ, which gives ωnm ¼∑kτωk . Going from ΔW to dW and from dJk to τℏ
are valid moves only when the consecutive orbits are infinitesimally close to each
other, as would be the case in the LFHQ limit.

2 Throughout this paper, I shall work with the case of a one-dimensional
system. For a general three-dimensional system, τω must be replaced with
τ1ω1þτ2ω2þτ3ω3 and the sums would be over all τis. My conclusions will not
be affected by this simplification. Also note that the inclusion of negative τs is a
matter of regrouping of terms and does not change the physics.

3 Similar considerations apply to the question of polarizations, which I shall not
discuss.

4 This discussion should not be confused with the discussion of the criterion
that the de Broglie wavelength be short compared to the distance over which
potential energy is considerable.

5 The quantization conditions were employed in the proof of (2). See footnote 1.
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