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The mapping of marine habitats mainly relies on acoustic techniques and there is a clear need for reliable
classification methods supplementing the interpreter with as much quantitative information as possible.
This article presents textural analyses of multibeam sonar imagery from Stanton Banks, on the continen-
PACS: tal shelf off Northern Ireland. TexAn, originally developed for the textural analysis of sidescan sonar

43.60.Lq imagery, was tested over an area of ~72 km? surveyed in 2005 by the European MESH project. The mul-
91.50.Ey tibeam imagery is affected by several artefacts, including strong uncorrected angular variations in some
91.50.Bd tracks, and the acquisition of some tracks with very different aspects. The results from unsupervised clas-
Keywords: sification of the imagery, using K-Means, match well the interpretations that can be made using concur-

rent bathymetric data and visual observations acquired in a later cruise. Textural analyses successfully
detect faint trawlmarks and distinguish between the different types of seafloor, including variations
within sediments, rocky outcrops and gullied terrains.
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1. Rationale

Large-scale acoustic mapping of marine habitats began in ear-
nest about a decade ago, with the collaborative research efforts
of North American institutions to create national marine sanctuar-
ies like Stellwagen Bank (e.g. [1]). It has now become a full-blown
field of study, with many successful applications throughout the
world (e.g. [2-5]). Habitat mapping aims at integrating biological
and geological studies with sonar imaging of the seabed and
overlying features. Although each mapping system has its own
advantages and limitations (e.g. coverage vs. resolution), multi-
beam sounders have proved the most versatile and complete
instrument, providing background topography and showing
seabed features in relatively high detail (e.g. [6]). For most modern
surveys, repeatability and time evolution have become key factors
(e.g.[7]). Owing to the amount of data collected in a typical survey,
and the subtle variations in acoustic responses of some seabed
features, visual interpretation of sonar records is no longer an
option. Acoustic classification systems must provide quantitative
data in a reasonable time, and supplement the interpreter with
as much information as possible.

There are many approaches to acoustic seabed classification,
and end-users from different fields aim for different objectives.
To conciliate the different aims, a workshop was organised in
2006 to bring together both providers of acoustic classification
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systems and users of sonar imagery and (potentially) classified
maps [8]. This workshop was held at the University of Ulster,
Coleraine, Northern Ireland, within the framework of the Interreg
IIIB project MESH (“Mapping European Seabed Habitats”) [9]. A
common dataset of multibeam bathymetry and imagery was
issued to all participants before the meeting, for treatment with
different approaches. These included reprocessing of the raw
acoustic measurements as well as processing with acoustic
classification systems, and the results are presented in companion
papers in this issue. The present article focuses on the analysis of
the multibeam imagery with TexAn, a proprietary software from
the University of Bath originally designed for textural analyses of
sidescan sonar imagery [10,11]. Section 2 describes the general
method used to analyse acoustic textures of sonar images with
TexAn. Section 3 shows its application to the multibeam imagery
from the common MESH dataset. Section 4 discusses the results,
comparing them with those from other studies and with available
ground-truth. It also makes recommendations for improving the
processing of the input multibeam imagery. Finally, Section 5 pro-
vides a synthesis and guidelines for further uses of the textural
analyses of multibeam imagery.

2. Method
2.1. Acoustic textures — TexAn software

Images, whatever their origin, are intuitively mapped on the ba-
sis of their tonal and textural properties. In the case of sonar


mailto:pyspb@bath.ac.uk
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust

Ph. Blondel, O. Gémez Sichi/Applied Acoustics 70 (2009) 1288-1297 1289

images, whether acquired with a sidescan or a multibeam, tonal
information is directly related to the amount of acoustic energy
backscattered, generally represented as grey levels. Different sta-
tistical indices (e.g. extrema and median values) can be used to
quantify local information. These first-order statistics quantify
the distribution of the grey levels, but do not take into account
their positions relative to each other (i.e. the acoustic textures).
These textures, however, account for most of the information in
acoustic images, as countless studies have shown (e.g. [7,10-21]).
The local textural properties can be summarised as rough or
smooth, varied or homogeneous, repetitive or random, and hence
can help in distinguishing between different areas and features
in the images. Quantitative textural measurements (second-order
statistics) can be extracted from the image with various tech-
niques, the most efficient being stochastic [12]. This original theo-
retical work was supplemented with practical applications to sonar
imagery by [10,13-16] and others, showing that Grey-Level Co-
occurrence Matrices (GLCMs) are optimally adapted. GLCMs ad-
dress the average spatial relationships between pixels of a small
region. Experiments on human vision (Julesz, 1973, in [10]) dem-
onstrated that the eye could not distinguish between textures with
different second-order statistics, proving GLCMs could be used to
go further than traditional, visual interpretation alone.

The University of Bath software TexAn uses the indices derived
from GLCMs calculated for each pixel in the images and clusters
relevant textural indices into appropriate groups, related to spe-
cific acoustic processes and structures on/in the seabed. This soft-
ware has been validated on sidescan sonar imagery in a variety of
environments (e.g. [10,11,15,17,18]), and recent developments
[19,20] showed its promise with multibeam sonar imagery.

To quantify the textures, TexAn calculates GLCMs {Pp(i,j)} over
the entire image, within moving windows of a set size. Each ele-
ment Pp(ij) expresses the relative frequency of occurrence, within
the window, of two pixels with the respective grey levels i and j at
D(SZ,0) (Euclidian distance SZ and angle 0) from one another. If the
image is quantified with NG grey levels, the GLCMs will be
NG x NG arrays. The distance D(SZ,0) is very sensitive to the orien-
tation 0. This is particularly true for sonar images, in which the
insonification angle can vary both along and across track. In order
to avoid changes in the textural indices of a feature with non-iso-
tropic texture, insonified at different angles, the GLCMs are calcu-
lated for the angles 0 = 0°, 45°, 90° and 135° and then averaged,
following Refs. [13] and [10]. Hence the only remaining computa-
tional parameters are the inter-pixel displacement SZ, the number
of grey levels (NG) and the size of the computational window (WS).
The matrices resulting from the calculations described above, how-
ever, cannot be interpreted directly in an easy way (as can be seen
from the examples in Fig. 1). Therefore, their information is sum-
marised in a set of statistical measures, called ‘indices’. More than
25 different textural indices have been described in the literature
(e.g. [10,13]), but a detailed evaluation of their performance has
shown that the combination of two indices (entropy and homoge-
neity) seems sufficient to explain nearly all the textural variability
in sidescan sonar images [10,14]. The entropy index measures the
lack of spatial organisation within the computational window, and
hence is a measure of the local amount of ‘chaos’. It will be higher
for rough textures, and lower for organised heterogeneities such as
ripples. Textural homogeneity is a measure of the amount of local
similarities within the window. The index is similar to the ‘inverse-
difference moment’ of [15] and will increase in windows with less
contrast (fewer grey levels). An additional factor was introduced by
[10] in the calculation of this index to ensure invariance during lin-
ear grey-level transformations (such as those caused by variations
in TVG or AVG from one computation window to another). Fig. 1
shows how GLCMs can vary for even simple textures, and how
entropy and homogeneity can clearly distinguish between even

complex textures. The textural indices having been chosen, there
is now a need to identify the best combination(s) of inter-pixel dis-
placement SZ, number of grey levels NG and computation window
size (WS) that maximise the difference between regions in the en-
tropy/homogeneity space (also called feature space).

2.2. Optimisation of textural parameters

This optimisation is performed by choosing Training Zones rep-
resentative of the acoustic facies encountered in the entire image
and which one wants to distinguish. These Training Zones need
to be square (to avoid over-emphasis on one direction in the im-
age). They need to be large enough to be statistically significant
for a large range of window sizes, WS, as their size influences the
number of times independent values can be measured. For exam-
ple, for a Training Zone of 100 x 100 pixels, choosing WS = 90 pix-
els can only yield 100 independent measurements of entropy and
homogeneity, whereas choosing WS =10 pixels can yield 8100
independent measurements. Conversely, Training Zones need to
be small enough to encompass only one type of acoustic texture.

The first parameter to vary is the size WS of the computation
window. It can in theory take any value smaller than the size of
the Training Zones, but is in fact constrained by its physical signif-
icance. Smaller values (10 pixels or smaller) will increase the con-
tributions of very close pixels and measure the high-frequency
backscatter variations in the image (generally attributable to
speckle, particularly in multibeam imagery). Larger values (close
to the size of the Training Zones) will instead look at lower-fre-
quency variations in the image, and will have a higher probability
of mixing two texturally distinct regions or missing intrinsic tex-
tural characteristics. Finally, the difference in insonification angles
from one edge of the computation window to the opposite edge
will need to be taken into account, although it will be smaller for
multibeam systems than for sidescan sonars.

The second textural parameter is the displacement size SZ with-
in the window. It is intricately linked to its size WS. Values close to
WS will emphasize variations of the same size as the computation
window, whereas the smaller values will emphasize the noise with-
in the window. Again, the influence of the variations in ensonifica-
tion angle between pixels separated by SZ should be accounted for.
If small-scale variations in large structures are to be detected, a
small SZ should be associated to a large WS. However, if the struc-
tures to be observed are characterised by variations of a wavelength
comparable to their dimensions, SZ should be slightly less than the
size of the window. Based on practice with both sidescan and mul-
tibeam imagery, the optimal values of SZ usually lie close to WS/2.

Last but not least, the number of grey levels NG will affect both
the speed of the computation and its accuracy. As NG decreases,
there are less and less variations around the mean grey levels
(smoothing of the dynamic range). For high values (as close to
the full dynamic range as possible), the textures are more likely
to appear rougher and more heterogeneous. Systematic tests show
that, as NG decreases from 256 (8-bit dynamics) to 16 (4-bit
dynamics), entropy will decrease linearly by 50% at most, and
homogeneity by 30%. The overall computation time varies approx-
imately as o(NG?). For 8-bit dynamic ranges, practice shows that
optimal numbers are usually between 32 and 128, depending on
the quality of the processing and the amount of noise in the image.

The combination(s) of optimal values are found by systematically
varying NG, WS and SZ and calculating entropy and homogeneity at
each point in the Training Zones. The separation between Training
Zones is visualised in the feature space. It can be tested quantita-
tively, but it is very sensitive to the overlap of poorly defined (or
complex) classes and a contextual assessment of the separation is
preferred. For example, dunes will be seen either as “dunes” for large
values of WS or as alternate “strips” for small values of WS. Similarly,
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