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HIGHLIGHTS

GRAPHICAL ABSTRACT

e¢A new multivariate penalized
regression model was developed.

o It includes information on the error
covariance matrix.

e The performance is better than clas-
sical multivariate models.

eIt is extremely simple from the
computational viewpoint.
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A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented.
Following a penalized regression strategy, the proposed model incorporates information about the
measurement error structure of the system, using the error covariance matrix (ECM) as a penalization
term. Results are reported from both simulations and experimental data based on replicate mid and near
infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions

when compared with traditional first-order multivariate methods such as ridge regression (RR), principal
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component regression (PCR) and partial least-squares regression (PLS).
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1. Introduction

When developing multivariate calibration models, the structure
of the instrumental noise is usually assumed to be independently
and identically distributed (iid), although this appears to be the
exception rather than the rule [1]. The noise information is
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contained in the error covariance matrix (ECM), a square matrix
with diagonal elements that are the variances at each instrumental
sensor, and the off-diagonal elements measure the covariance or
degree of correlation of the noise at different sensors [1—3]. When
the noise is not iid, incorporating this information into the multi-
variate calibration models improves the prediction ability in com-
parison with classical counterparts [4—8]. Various procedures have
been proposed for the experimental estimation of the ECM from
replicate sample measurements [1,2].

Inverse multivariate calibration is today the model of choice for
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a myriad of applications, which are mainly concentrated in the field
of near infrared (NIR) spectroscopy [9], although additional multi-
variate signals including optical spectra [UV—visible, mid infrared
(MIR)] or other sources (nuclear magnetic resonance, chromatog-
raphy, electrochemical traces, etc.) are available for similar pur-
poses. In these inverse models, the calibration phase solves the
inverse problem yc;; =X b, where yc, is the vector of calibration
concentrations for the analyte of interest, X is the matrix of full
calibration spectra and b the vector of regression coefficients. The
bottle-neck step when solving this model is the inversion of the
matrix product (X"X), (the superscript ‘T’ implies transposition).
Because X usually contains considerably more wavelengths than
samples, the product (X"X) is singular, and different strategies are
employed to tackle this issue [10].

Maximum likelihood principal component regression (MLPCR)
is an inverse calibration model which considers the noise structure
in its formulation [4,6,11]. It can be described as a PCR model
where: (1) maximum likelihood principal component analysis
(MLPCA) [12,13], rather than PCA, is employed in the decomposi-
tion of the calibration data matrix, and (2) a maximum likelihood
projection, rather than an orthogonal projection into the PCA
subspace, is used in the prediction step [4]. As other classical in-
verse models, MLPCR solves the inverse calibration problem by
reducing the dimensionality of the full-spectral data by a projection
onto a handful of latent variables. MLPCR has been shown to
outperform classical PCR and partial least-squares (PLS) when the
noise deviates from the iid paradigm [4,5].

An apparently unrelated family of inverse multivariate calibra-
tion models includes the so-called penalized regression. They solve
the inverse calibration problem by adding a penalized term to the
non-invertible matrix product (X"'X). The term can be as simple as a
small multiple of a unit matrix, as in ridge regression (RR) [14,15], or
may include matrices of different complexity as in Tikhonov's
regularization [16—18]. These latter models have found important
applications in calibration transfer and maintenance [19,20].
Penalized regression has also been successfully applied in other
relevant fields, such as: (1) fluorescence microscopy, to achieve the
blind deconvolution and detection of the origin of emission sources
and to increase image resolution [21,22], (2) time resolved spec-
troscopy [23] and (3) determination of diffusion coefficients in
pulsed gradient spin echo NMR data [24].

In the present report, we describe a simple inverse multivariate
model incorporating the noise structure information, based on
penalized regression using the error covariance matrix for penali-
zation. It is extremely simple in computational terms (only a single
programming line is needed for estimating the vector of regression
coefficients, see Appendix), it requires no latent variables estima-
tion, and provides analytical prediction results which are compa-
rable to those furnished by MLPCR. When non-iid noise is present,
it outperforms the classical PCR, PLS and RR models, as confirmed
in a variety of simulated data sets with controlled noise properties.
To the best of our knowledge, this is the first time experimental
data sets including replicates from both calibration and indepen-
dent validation samples are discussed. The latter sets were
analyzed using the proposed model, with similar results to those
obtained for the simulations. The improved analytical ability can be
explained by the model inclusion of error covariance matrices
estimated from extensive replicate analysis, which showed that the
experimental noise was not iid.

2. Theory
2.1. Model

ECPR is based on the specific inverse least-squares model

developed by Brown [25], although the latter can only be applied
when the pure spectra of all sample constituents are known (unlike
most inverse multivariate models). In the present case, Brown's
model is adapted to the usual situation where the spectra are
measured for mixtures, and only the concentration of a single an-
alyte is known. Analyte prediction (y) proceeds through the usual
expression:

y=xb (1)
where X is the test sample spectrum, and b is given by:
b= (XX +13)"" X" yeal (2)

where I is the number of calibration samples and =y is the error
covariance matrix characterizing the structure of the instrumental
noise. The latter can be estimated as described in Refs. [1,2].
Equation (2) is the solution of the minimization of an objective
function which represents a trade-off between (squared) calibra-
tion error and prediction uncertainty, i.e., b is estimated as:

b —arg min(|[X b —year ||* /I + b" = b) 3)

where || || indicates the Euclidean norm.

In the present report, =4 is proposed to be the (simulated or
experimental) error covariance matrix for the test sample. In the
simulations, the matrix inversion in equation (2) is not problem-
atic; however, in the experimental cases =y may be singular or
near-singular. This issue can be solved by incorporating an addi-
tional penalized term in equation (2):

b=XX+13+ M) X yeu (4)

where I is an appropriately dimensioned unit matrix and A a
tunable parameter, which can be easily estimated by cross-
validation [26] or by resorting to the so-called L-curve [27,28], as
in RR-type methods. Recently, a somewhat related penalized
regression model has been discussed in the context of calibration
maintenance, using sample residuals as penalization term instead
of the complete error covariance matrix [29]. In the present study,
the root mean square error in cross-validation (RMSECV) values vs.
the number of latent variables were considered for optimizing the
PLS, PCR and MLPCR models, and RMSECV vs. A for optimizing the
RR and ECPR models.

Even when ECPR is extremely simple from the computational
point of view (it requires a single program line, see Appendix), it
efficiently takes into account the noise structure, with results
which are comparable with seemingly more complex models such
as MLPCR. An advantage of ECPR might be the fact that it does not
employ latent variables: it is well-known that the estimation of the
number of components for PCR and PLS by cross-validation is
sometimes dependent of the specific procedure employed and on
rather subjective judgments that can lead to different results.
However, ECPR requires the estimation the A parameter, and, as all
ML-based models, the collection of replicate spectra to estimate =y.
The performance of ECPR will be compared in this report with
classical PCR/PLS, MLPCR and RR. The theory of these latter models
can be found in the relevant literature.

2.2. Simulated data

Simulated spectra for three compounds (one analyte of interest
and two interferents) were generated using Gaussian curves,
varying the following parameters: (1) degree of selectivity, (2)
noise type and (3) noise magnitude. Calibration and test
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